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Multiomics Analysis Reveals the Impact of Microbiota on
Host Metabolism in Hepatic Steatosis

Mujdat Zeybel, Muhammad Arif, Xiangyu Li, Ozlem Altay, Hong Yang, Mengnan Shi,
Murat Akyildiz, Burcin Saglam, Mehmet Gokhan Gonenli, Buket Yigit, Burge Ulukan,
Dilek Ural, Saeed Shoaie, Hasan Turkez, Jens Nielsen, Cheng Zhang, Mathias Uhlén,
Jan Borén,* and Adil Mardinoglu*

Metabolic dysfunction-associated fatty liver disease (MAFLD) is a complex
disease involving alterations in multiple biological processes regulated by the
interactions between obesity, genetic background, and environmental factors
including the microbiome. To decipher hepatic steatosis (HS) pathogenesis by
excluding critical confounding factors including genetic variants and diabetes,
56 heterogenous MAFLD patients are characterized by generating multiomics
data including oral and gut metagenomics as well as plasma metabolomics
and inflammatory proteomics data. The dysbiosis in the oral and gut
microbiome is explored and the host–microbiome interactions based on
global metabolic and inflammatory processes are revealed. These multiomics
data are integrated using the biological network and HS’s key features are
identified using multiomics data. HS is finally predicted using these key
features and findings are validated in a follow-up cohort, where 22 subjects
with varying degree of HS are characterized.
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1. Introduction

Nonalcoholic fatty liver disease (NAFLD) is
characterized by deposition of lipid droplets
in the liver without significant alcohol con-
sumption and secondary causes, which now
has been defined as metabolic dysfunction-
associated fatty liver disease (MAFLD).
MAFLD constitutes a wide range of the
clinical spectrum, including hepatic steato-
sis (HS) and nonalcoholic steatohepatitis
(NASH), which may ultimately lead to ad-
vanced fibrosis and cirrhosis. In parallel to
ongoing epidemics of obesity, MAFLD in-
cidence is increasing globally, affecting al-
most one-fourth of the population.[1] Even
though MAFLD is becoming a leading etiol-
ogy of chronic liver disease, therapeutic ap-
proaches for MAFLD are currently limited
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with lifestyle modifications encompassing dietary intervention
and physical activity.[2]

Given that MAFLD is closely linked to metabolic syndrome,
obesity, and type 2 diabetes (T2D), its pathogenesis is remarkably
complex. Discoveries of PNPLA3 and TM6SF2 variants have
highlighted the pathological processes leading to metabolic
disturbances in HS. However, only 10–20% of MAFLD suscepti-
bility could be attributed to known genetic variants.[3] Exploring
the connections between the hepatic and extra-hepatic metabolic
factors through the generation of the multiomics data may re-
veal the underlying molecular mechanisms associated with the
disease’s occurrence, discovering novel biomarkers and drug tar-
gets, and eventually provide further insight for the development
of efficient treatment strategies. The dysbiosis and diversity
in the oral and gut microbiome have been associated with
MAFLD[4] as well as metabolic syndrome,[5] type 2 diabetes,[6]

and obesity.[7] Studies indicated that microbiome composition
changes are associated with advanced hepatic fibrosis[8] and
cirrhosis.[9] Moreover, several studies integrated multiomics data
across various environmental states through systems biology.
These studies demonstrated that a multiomics approach is a
powerful tool for understanding the dynamics of biological
functions in liver diseases and other associated metabolic
conditions.[10]

Here, we generated detailed clinical data and multiomics data
(plasma metabolomics, plasma proteomics, oral microbiome,
and gut microbiome) for 56 subjects to characterize the patients
with different levels of hepatic steatosis. We also performed an
integrated analysis and then deciphered the pathogenesis of
early stage MAFLD. We collected saliva and feces samples for
studying the dysbiosis in the oral and gut microbiome through
the generation of shotgun metagenomics data and identified
the key species involved in various stages of HS. Moreover, we
performed plasma metabolomics and inflammatory proteomics
analysis to explore the host–microbiome interactions. We stud-
ied the altered global metabolic and inflammatory processes,
and its connections with the species’ abundances in the oral
and gut microbiome. We integrated this multiomics data using
biological networks and identified the key features of HS. We
finally predicted HS using these key features and validated
our findings in a follow-up cohort including 22 subjects with
varying HS.
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2. Results

2.1. The Associations between HS and Clinical and Physical
Variables

We generated multiomics data for 56 overweight and obese sub-
jects (body mass index (BMI) > 28.8 kg m−2) with a varying de-
gree of HS. We excluded patients if they carry PNPLA3 I148M
(homozygous for I148M). We determined HS by the proton den-
sity fat fraction, measured by magnetic resonance imaging (MRI-
PDFF). We classified the subjects into four different groups: i) 10
subjects with no steatosis (HS < 5.5%), ii) 14 subjects with mild
steatosis (5.5% ≤ HS < 8%), ii) 20 subjects with moderate steato-
sis (8.0% ≤HS < 16.5%), and iv) 12 subjects with severe steato-
sis (HS ≥ 16.5%) (Figure 1A,B). We carefully phenotyped these
subjects by measuring clinical and physical variables (Dataset
S1A–C, Supporting Information). We also collected saliva and fe-
ces samples to generate metagenomics data and plasma samples
to generate metabolomics and inflammatory proteomics data.
The subjects’ demographic characteristics in each group are pre-
sented (Dataset S1C,D, Supporting Information).

To confirm our findings based on multiomics analysis of 56
subjects and avoid the genetic differences between the subjects,
we re-analyzed 22 of these patients after 2–3 months, generated
clinical data, and measured the HS, denoted as follow-up cohort.
We observed that the degree of HS in each subject has changed
since they have been recommended changes in their exercise
and eating habits. The subjects’ demographic characteristics in
each group are presented (Dataset S2A–D, Supporting Informa-
tion). These 22 subjects were classified based on HS as i) two
subjects with no steatosis, ii) five subjects with mild steatosis,
iii) eight subjects with moderate steatosis, and iv) seven subjects
with severe steatosis. In the follow-up cohort, we also generated
oral (Dataset S2E, Supporting Information) and gut (Dataset S2F,
Supporting Information) metagenomics, metabolomics (Dataset
S2G, Supporting Information), and proteomics (Dataset S2H,
Supporting Information) data using a similar methodology as in
the finding dataset. We compared the difference between the clin-
ical characteristics of the patients with HS degree from the overall
and follow-up cohorts. The result showed that there was no differ-
ence in clinical parameters except serum total bilirubin between
no steatosis patients from the two cohorts (Student’s t-test, p <

0.05, Dataset S2I, Supporting Information).
We analyzed the differences in the clinical and physical vari-

ables between the groups with different HS degrees in the overall
dataset (Dataset S1C, Supporting Information). We did not find
any differences in the weight, BMI, waist circumference, home-
ostasis model assessment-estimated insulin resistance score,
glucose, insulin, and HbA1c levels between different steatosis
groups. We found that the levels of alanine aminotransferase
(ALT; Figure 1C), aspartate aminotransferase (AST; Figure 1D),
uric acid (urate; Figure 1E), and gamma-glutamyl transferase
(GGT; Figure 1F) were significantly higher in subjects with severe
and moderate steatosis but not mild steatosis, compared with
no steatosis. Although we could not detect any significant differ-
ences in the level of these different clinical parameters in subjects
with mild steatosis versus no steatosis, we observed a tendency
of increase in these variables’ grades. We also found that the lev-
els of clinical variables including albumin (Figure 1G), creatinine
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Figure 1. A) The design of the study. Subjects were stratified into four distinct groups based on the hepatic steatosis percentages measured using
MRI-PDFF. The sample sizes of none, mild, moderate, and severe steatosis groups are 10, 14, 20, and 12, respectively. B) The boxplot shows hepatic
steatosis of subjects with none, mild, moderate, and severe steatosis. Student’s t-test was used for statistical analysis. C–J) Significantly different clinical
parameters are presented in subjects with none, mild, moderate, and severe steatosis. Student’s t-test was used for statistical analysis. K) PCA of all
subjects based on eight significantly different clinical and physical variables shows good separation.
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(Figure 1H), and creatine kinase (Figure 1I) as well as the amount
of fat-free mass in right arm (Figure 1J) were significantly higher
in subjects with severe steatosis but not in subjects with mod-
erate and mild steatosis, compared with no steatosis. Similarly,
we observed a tendency of increase for above clinical and phys-
ical variables in subjects with moderate and mild steatosis ver-
sus no steatosis. Thus, the above eight clinical and physical vari-
ables significantly elevated in the moderate and/or severe groups
were the key clinical variables during MAFLD progression. Based
on these variables, we performed principal component analysis
(PCA), and this showed a distinct separation between no, mild,
moderate, and severe steatosis (Figure 1K).

2.2. Dysbiosis in the Gut and Oral Microbiome of MAFLD
Patients

We generated metagenomics data to study the dysbiosis in the
microbial composition in the gut and oral microbiome (Dataset
S3, Supporting Information) and explored the interactions be-
tween the host and microbiome in subjects with varying degree
of HS. First, we identified the species with significant changes in
the abundance of gut and oral microbiome in the mild, moder-
ate, or severe steatosis group compared to the no steatosis group
(Wilcoxon signed-rank test, p < 0.05). Then, we performed a lin-
ear regression analysis for these significantly changed species be-
tween different HS groups using the Log2 fold changes (Log2FC)
between each HS group versus no steatosis group. As shown in
Figure 2A, the change of species showed a positively correlated
tendency between the mild and moderate groups and between
the moderate and severe groups while a negatively correlated ten-
dency between the mild and severe groups, suggesting a large dif-
ference of gut microbiome composition, when the status devel-
ops into the severe steatosis stage. In contrast, the species from
the oral microbiome always showed a positively correlated ten-
dency between different HS groups, suggesting a fraction of sim-
ilar changes in the oral microbiome composition between differ-
ent groups (Figure 2B).

Based on the differential analysis of the gut microbiome, we
found that the abundances of individual species in Bacteroidetes
(Prevotella sp CAG 520, Prevotella sp AM42 24, Butyricimonas
virosa, and Odoribacter splanchnicus), Proteobacteria (Escherichia
coli), Lentisphaerae (Victivallis vadensis), and Firmicutes (Holde-
manella biformis, Dorea longicatena, Allisonella histaminiformans,
and Blautia obeum) were significantly reduced in subjects with
mild steatosis versus no steatosis. Notably, when we compared
moderate versus no steatosis, we found that the abundance of
only Firmicutes bacterium CAG 95 was significantly reduced. In
contrast, the abundance of species belonged to Firmicutes (Strep-
tococcus mitis and Roseburia inulinivorans) and Bacteroidetes (Bar-
nesiella intestinihominis and Bacteroides uniformis) was signifi-
cantly increased in subjects with moderate steatosis versus no
steatosis (p < 0.05, Figure 2A and Dataset S4, Supporting In-
formation). Moreover, we compared the species’ abundances in
the gut microbiome between severe versus no steatosis patients.
We found that the abundances of the species in Actinobacteria
(Slackia isoflavoniconvertens), Bacteroidetes (Butyricimonas virosa
and Odoribacter splanchnicus), Lentisphaerae (Victivallis vadensis),
Firmicutes (Dorea longicatena, Firmicutes bacterium CAG 83, Fir-

micutes bacterium CAG 95, Firmicutes bacterium CAG 110, Rose-
buria hominis, Roseburia sp CAG 182, Oscillibacter sp CAG 241,
and Ruminococcus bromii), and Proteobacteria (Bilophila wadswor-
thia) were significantly reduced in subjects with severe steatosis
versus no steatosis (p < 0.05, Figure 2A and Dataset S4, Support-
ing Information). We observed that the abundance of Firmicutes
bacterium CAG 95 was significantly reduced in the gut micro-
biome of subjects with both severe and moderate steatosis versus
no steatosis.

Similarly, we compared the differences in the species’ abun-
dances between mild versus no steatosis in the oral microbiome.
We found that the abundance of the specific species in Firmi-
cutes (Veillonella atypica, Veillonella infantium, and Eubacterium
rectale), Bacteroidetes (Prevotella sp CAG 520), and Actinobacteria
(Corynebacterium matruchotii) was significantly reduced in sub-
jects with mild steatosis versus no steatosis (p < 0.05, Figure 2B
and Dataset S4, Supporting Information). Our findings also re-
vealed increased abundance of species in Firmicutes (Abiotrophia
defectiva) and reduced abundance of Proteobacteria (Campylobac-
ter rectus and Haemophilus sputorum) in subjects with moderate
versus no steatosis (p < 0.05, Figure 2B and Dataset S4, Sup-
porting Information). Notably, the abundance of species in Bac-
teroidetes (Porphyromonas endodontalis and Prevotella sp F0091)
and Proteobacteria (Haemophilus sputorum) was significantly re-
duced, whereas the abundance of species in Actinobacteria (Acti-
nomyces johnsonii) was significantly increased in the oral micro-
biome of subjects with severe steatosis versus no steatosis (p <

0.05, Figure 2B and Dataset S4, Supporting Information). We ob-
served that the abundance of Haemophilus sputorum was signifi-
cantly reduced in the oral microbiome of subjects with both se-
vere and moderate steatosis versus no steatosis.

In line with the severity of steatosis, we found that Bac-
teroidia was the most, and Clostridia was the second most
abundant bacteria in the gut microbiome composition. The
Clostridia/Bacteroidia ratio is notably decreased in severe steato-
sis versus no steatosis (Figure 2C and Dataset S3, Supporting In-
formation). Moreover, we found that the relative abundance of
the Firmicutes and Negativicutes is reduced in severe steatosis
versus no steatosis. On the other hand, the abundance of the Neg-
ativicutes was increased in severe steatosis versus no steatosis
(Figure 2D and Dataset S3, Supporting Information).

2.3. The Associations between Metagenomics Data and Clinical
Parameters

Correlation analysis between the abundances of gut and oral
microbial species and the significantly altered clinical variables
in both moderate and severe steatosis group showed that there
are two distinct clusters with the reduced and increased abun-
dance of species (Figure 3A,B). Our analysis also showed that
the abundance of species belonged to Firmicutes (Ruminococcus
bromii, Dorea longicatena, and Roseburia sp CAG 182) was neg-
atively correlated with HS, AST, ALT, and uric acid levels in the
gut microbiome (p < 0.05, Figure 3A and Dataset S5, Support-
ing Information). Moreover, the characterization of oral micro-
biome revealed that the abundance of Campylobacter concisus and
Capnocytophaga granulosa is negatively correlated, but Eikenella
sp NML130454 and Actinomyces johnsonii is positively correlated
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Figure 2. A) Scatter plot with a linear regression line, and heatmap shows Log2FC-based alterations of the significantly different species in the A) gut
microbiome and B) oral microbiome of subjects with different hepatic steatosis degrees. Asterisks indicate statistical significance based on paired
Wilcoxon signed-rank tests. p < 0.05. Log2FC: log2(fold change). Stacked bar plots depicting class-level differences in C) gut microbiome and D) oral
microbiome composition between the severe-no, moderate-no, and mild-no steatosis groups. The “other” subcategory included viruses, fungi, and rare
species (abundance <1%). The sample sizes of none, mild, moderate, and severe steatosis groups are 10, 14, 20, and 12, respectively.
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Figure 3. Heatmap shows the association between the five significantly different clinical variables’ plasma level with the abundance of species in the
A) gut microbiome and B) oral microbiome. C) Heatmap shows the association between the abundance of species in the gut and oral microbiome.
Asterisks indicate the statistical significance based on Spearman correlation with p < 0.05. Cor.coef.: correlation coefficient. All of the 56 samples with
different steatosis levels were used for the correlation analysis.
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Table 1. The highlighted gut and oral microbiome species, which show correlation with the clinical variables, significantly different abundance between
different steatosis groups and clinical relevance.

Species Diseases or phenotypes Reference (PMID) Human metabolic pathways in the Human Gut
Microbiome Atlas (Top three)

Gut microbiome

Ruminococcus bromii Liver fibrosis and primary bile acid metabolism in MAFLD 33020474 Glycolysis/Gluconeogenesis; Fatty acid biosynthesis;
Pyrimidine metabolism

Dorea longicatena Liver cirrhosis in MAFLD 28467925 Fatty acid biosynthesis; Alanine, aspartate, and
glutamate metabolism; Glycine, serine, and
threonine metabolism

Insulin resistance in obesity 26075636

Roseburia sp CAG 182 Higher abundance in healthy vegetarians/vegans
compared to omnivores and related to lipid metabolism

34315772 –

Firmicutes bacterium CAG 95 Healthy dietary patterns, fatty acid metabolism, and
inflammation

33432175 –

Firmicutes bacterium CAG 110 Fatty acid metabolism and inflammation 33432175 –

Holdemanella biformis Liver fibrosis in high risk of fatty liver disease 34633706 Glycolysis/Gluconeogenesis; Pentose phosphate
pathway; Galactose metabolism

Colorectal cancer, inflammation-related gastrointestinal
diseases and host lipid metabolism

26636046

Bilophila wadsworthia Inflammation, intestinal barrier dysfunction, bile acid
dysmetabolism, glucose dysmetabolism, and hepatic
steatosis

30022049; 22722865;
29090023; 33482026

Glycolysis/Gluconeogenesis; Citrate cycle (TCA cycle);
Pentose phosphate pathway

Escherichia coli Advanced liver fibrosis in NAFLD 31484056 Glycolysis/Gluconeogenesis; Citrate cycle (TCA cycle);
Pentose phosphate pathway

Victivallis vadensis Increase in high-fat diet mouse model 31847305 Glycolysis/Gluconeogenesis; Pentose and glucuronate
interconversions; Galactose metabolism

Oral microbiome

Actinomyces johnsonii Periodontal infections 12102762 –

Actinomycosis 33931097

Haemophilus sputorum Primary sclerosing cholangitis 29615776 –

Porphyromonas endodontalis Periodontal infections 16390335; 12709498;
16930307

–

Prevotella sp F0091 Immune response 28542929 –

with HS, ALT, and AST levels (Figure 3B and Dataset S5, Sup-
porting Information). Interestingly, we found that the reduced
abundance in some Haemophilus members was negatively cor-
related with the HS and ALT levels (p < 0.05, Figure 3B and
Dataset S5, Supporting Information). Other significantly corre-
lated species with clinical parameters are presented in the Sup-
porting Information, Figure 3A,B, and Dataset S5 in the Sup-
porting Information. As shown in Table 1, we highlighted sev-
eral gut microbial species, which were associated with the clinical
variables and showed significantly different abundance at least
in one of the steatosis groups compared to the none steatosis
group. Meanwhile, it has been reported that these species are
associated with MAFLD, dietary pattern, or immune dysregula-
tion and contain genes which were linked with some key human
metabolic pathways in Human Gut Microbiome Atlas (https://
www.microbiomeatlas.org/).[11] The abundance of Ruminococcus
bromii is negatively correlated with the fibrosis severity and pri-
mary bile acid levels in nonobese MAFLD subjects.[12] The abun-
dance of Dorea longicatena is decreased in MAFLD-cirrhosis[8]

and negatively correlated with the markers of insulin resistance
in postmenopausal women with obesity.[13] Roseburia sp CAG

182 shows higher abundance in healthy vegetarians/vegans com-
pared to omnivores and it is related to lipid metabolism.[14] Fir-
micutes bacterium CAG 95 is associated with dietary patterns
and its abundance shows a strongly positive correlation with
healthy plant- or animal-based foods while less correlation with
less healthy plant- or animal-based foods.[15] In addition, both Fir-
micutes bacterium CAG 95 and Firmicutes bacterium CAG 110 are
associated with the dysregulation of fatty acid metabolism and an
inflammatory surrogate GlycA in host.[15] Liver fibrosis is pos-
itively correlated with the abundance of Holdemanella biformis
in a cohort of patients with high risk for fatty liver disease.[16]

In addition, this species is also associated with colorectal can-
cer, inflammation-related gastrointestinal diseases, and host lipid
metabolism.[17] The expansion of Bilophila wadsworthia is asso-
ciated with increased inflammation, intestinal barrier dysfunc-
tion, and bile acid dysmetabolism in host, leading to higher glu-
cose dysmetabolism and hepatic steatosis.[18] The MAFLD sub-
jects with advanced fibrosis showed increased concentration of
Escherichia coli.[19] In our analysis, we found the abundance of
Escherichia coli and Bilophila wadsworthia was significantly de-
creased in mild or severe steatosis group compared to none
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steatosis group, which may be because of the different dietary pat-
terns in different races compared to previous studies. It has been
reported that the abundance of Victivallis vadensis is increased in
high-fat diet mouse model.[20]

Similarly, we also highlighted several oral microbial species
and the related diseases or phenotypes in Table 1. The abun-
dance of Actinomyces contributes to the root caries, peri-
odontal infections,[21] and actinomycosis.[22] The abundance of
Haemophilus in saliva is significantly decreased in the primary
sclerosing cholangitis patients compared to ulcerative colitis
patients.[23] Porphyromonas endodontalis is enriched in periodon-
tal disease[24] and Prevotella spp is an important pathobiont that
participates in human chronic inflammation.[25]

2.4. The Link between the Oral and Gut Microbiome

We observed that the alterations in the oral microbiota correlated
with the alterations in the gut microbiota. We explored the asso-
ciations between the abundance of oral and gut microbiome to
study host and microbiome interactions in this context. Interest
in butyrate-producing bacteria has increased with the earlier re-
ports showing their essential role in the healthy human colon.[26]

Here, we found that the abundance of Actinomyces sp ICM47
in the oral microbiome was negatively correlated with butyrate-
producing species, namely, Eubacterium rectale and Roseburia fae-
cis (p < 0.05, Figure 3C and Dataset S6, Supporting Information).
Also, we found a negative correlation between the abundance of
Faecalibacterium prausnitzii and Roseburia intestinalis in the gut
microbiome with the abundance of Prevotella sp oral taxon 306
in the oral microbiome. Notably, there was a positive correla-
tion between the abundance of Faecalibacterium prausnitzii in the
gut microbiome with the abundance of Haemophilus parainfluen-
zae, Neisseria mucosa, and Prevotella copri in the oral microbiome
(p < 0.05, Figure 3C and Dataset S6, Supporting Information).
All significantly correlated species between oral and gut micro-
biome are presented in the Supporting Information, Figure 3C,
and Dataset S6 in the Supporting Information.

2.5. Metabolomics Alterations in the Plasma of MAFLD Patients

To study the interactions between the microbiome and host, we
generated untargeted metabolomics data based on the plasma
samples of the 56 subjects and measured the abundance of 1032
metabolites (Dataset S7, Supporting Information). After exclud-
ing metabolites with missing values in >50% of samples, we an-
alyzed the plasma level of 928 metabolites in the study (Dataset
S8, Supporting Information). Then, we identified the differen-
tially expressed metabolites between groups and revealed the
key metabolites associated with the underlying molecular mech-
anisms related to HS progression (Dataset S8, Supporting Infor-
mation).

We identified 43, 79, and 129 metabolites significantly differ-
entially expressed in the mild, moderate, severe steatosis sub-
ject groups compared with no steatosis, respectively (Student’s
t-test, p < 0.05, Dataset S8, Supporting Information). Of these
metabolites, 17, 52, and 66 of them were associated with the lipid
metabolism (Figure S1, Supporting Information) whereas 26, 27,

and 63 of them were related to other parts of metabolism (e.g.,
amino acids, NAD+, and antioxidant metabolism) (Figure 4A).
Among these nonlipid metabolites, we found that 16 metabo-
lites were significantly different only in mild steatosis versus no
steatosis (Figure 4B), 14 metabolites significantly differed only
in moderate steatosis versus no steatosis (Figure 4C), and 43
metabolites significantly differed only in the severe steatosis ver-
sus no steatosis (Figure 4D). We presented all 63 significantly
different metabolites in the severe steatosis versus no steatosis
in Figure 4D.

We found the plasma level of heme was significantly higher
only in mild steatosis versus no steatosis (Figure 4B). As the pre-
cursor of pro- or antioxidants of biliverdin and bilirubin, the al-
teration of heme synthesis may be associated with increased ox-
idative stress in MAFLD.[27] Notably, we found that bilirubin’s
degradation product was significantly lower in severe steatosis
versus no steatosis (Figure 4D). N-acetyl kynurenine, which can
promote inflammation,[28] also increased only in mild steatosis
versus no steatosis (Figure 4B).

The plasma level of quinolinate, a precursor for nicotinamide
adenine dinucleotide (NAD+) synthesis, was significantly down-
regulated only in subjects with moderate steatosis versus no
steatosis (Figure 4C). It has been reported that downregula-
tion of quinolinate is associated with MAFLD in animals,[29]

and the altered NAD+ metabolism is associated with MAFLD
in humans.[30] Moreover, we found that N,N,N-trimethyl-5-
aminovalerate (TMAVA) plasma level was significantly increased
in moderate steatosis versus no steatosis. The increase in the
plasma level TMAVA in MAFLD patients has been reported to be
associated with the changes in the gut microbiome.[31] It has also
been proposed as a predictor of microalbuminuria in patients
with type 1 diabetes.[32] We found the plasma levels of serine,
N-acetylglycine, and glycine-conjugated metabolites were signif-
icantly decreased only in subjects with severe steatosis versus no
steatosis (Figure 4D). Previously, we have found that MAFLD is
associated with serine deficiency and reported that serine and
glycine are key metabolites for glutathione synthesis,[33] which is
required for preventing the accumulation of intermediate prod-
ucts of fatty acid oxidation.[30] We have proposed that serine sup-
plementation may treat these patients.[34] Meanwhile, we found
all the bilirubin degradation products were downregulated only
in severe steatosis versus no steatosis. Bilirubin can function as
an antioxidant, reducing the HS accumulation.[35] On the other
hand, we found that plasma level of metabolites involved in tryp-
tophan, lysine, and uric acid metabolism was significantly in-
creased in subject with severe steatosis (Figure 4D). We observed
that the plasma level of uric acid and xanthine involved purine
metabolism was significantly increased in subjects with severe
steatosis versus no steatosis. We also found that the plasma level
of N,N,N-trimethyl-alanylproline betaine (TMAP) associated with
urea cycle was significantly increased in subjects with severe
steatosis versus no steatosis. These results agree with the pre-
vious studies, where plasma uric acid level is significantly asso-
ciated with HS in MAFLD patients.[36]

We also found that the plasma level of cysteine-glutathione
disulfide, a glutathione and cysteine-conjugate product, was sig-
nificantly lower in subjects with severe and moderate steatosis
versus no steatosis. It has been reported that the concentration of
cysteine-glutathione disulfide was significantly lower in subjects
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Figure 4. A) Venn diagram shows significantly altered nonlipid metabolites in all groups compared to none steatosis. Heatmap shows Log2FC-based
alterations of metabolites that are exclusively different in the subjects with B) mild steatosis and C) moderate steatosis compared to the subjects with no
steatosis. D) All significantly altered nonlipid metabolites in the subjects with severe steatosis than the subjects with no steatosis are shown. Asterisks
indicate statistical significance based on t-test. p < 0.05. Log2FC: log2(fold change). The sample sizes of none, mild, moderate, and severe steatosis
groups are 10, 14, 20, and 12, respectively.
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with steatosis and NASH.[37] We observed that plasma level of
3-hydroxyisobutyrate (3-HIB), oxidized cys-gly was significantly
higher and of 5,6-dihydrouracil was significantly lower in all the
three steatosis groups versus no steatosis (Figure 4D). Previ-
ously, we measured plasma levels of 3-HIB, involved in branched-
chain amino acids (BCAAs) metabolism in around 10 000 exten-
sively phenotyped individuals, and identified 3-HIB as a marker
of insulin resistance, mitochondrial dysfunction, and future risk
of developing T2D,[38] which are closely linked to MAFLD. The
oxidized form of l-cysteinylglycine is involved in glutathione
metabolism, which has been reported to have a critical role in
MAFLD’s progression and treatment.[4b,10b,30,38] The reduction of
uracil produces 5,6-dihydrouracil, and it is involved in pyrimidine
and beta-alanine metabolism.

2.6. Associations between the Plasma Metabolome and Patient
Phenotype

We assessed the associations between the plasma level of signif-
icantly different five clinical parameters including liver fat, uric
acid, ALT, AST, and GGT with the plasma level of metabolites
(Figure 5A and Dataset S9, Supporting Information). We found
that all these clinical variables were positively correlated with the
plasma level of TMAP and BCAA and its conjugates, including
leucine, isoleucine, gamma-glutamyl leucine, gamma-glutamyl
isoleucine, gamma-glutamyl valine, 3-methyl-2-oxovalerate, and
N-acetyl carnosine. Like 3-HIB, other BCAAs products have been
associated with MAFLD progression, insulin resistance, mito-
chondrial dysfunction, and incidence of T2D.[39] The level of ALT,
AST, and GGT was positively correlated with the plasma level of
kynurenine, can activate inflammatory response, and has been
associated with MAFLD.[28] Moreover, uric acid’s plasma level
was significantly positively correlated with all these parameters.

In contrast, cysteine-glutathione disulfide’s plasma level was
significantly negatively correlated with these five clinical parame-
ters. The plasma level of 17alpha-hydroxypregnenolone 3-sulfate
and 5alpha-pregnan-3beta,20alpha-diol monosulfate (2) was sig-
nificantly negatively associated with HS, ALT, AST, and GGT lev-
els (Figure 5A). The differences in these metabolites’ plasma level
can be used to detect HS and explore the effect of treatment in
MAFLD patients.

2.7. The Influence of the Microbiome on the Plasma Metabolome

In the gut microbiome, the abundances of the numerous
species belonged to Bacteroidales (except Provetolla copri) and
Clostridiales (except Eubacterium rectale) are negatively correlated
with specific peptides and amino acids (e.g., gamma-glutamyl-
alpha-lysine, S-adenosylhomocysteine, gamma-glutamyl threo-
nine, and threonine) (Figure S2, Dataset S13, Supporting Infor-
mation). The metabolites associated with primer and seconder
bile acid metabolism are negatively correlated with abundances
of the Roseburia intestinalis, Parabacteriodes diastonis, Bacteroides
vulgatus, and Bacteroides uniformis (Figure S2, Dataset S13, Sup-
porting Information). Of note, these species showed a positive
correlation with isoursodeoxycholate, associated with secondary
bile acid metabolism (Figure S2, Dataset S13, Supporting Infor-
mation).

In the oral microbiome, the correlation between the abun-
dances of the individual species and significantly altered plasma
metabolites in different HS groups was positively correlated with
the abundances of certain species in Bacteroidia and Neisseria
subflava but negatively correlated with the abundances of the Acti-
nomyces spp. and Rothia dentocariosa (Figure S3, Dataset S13,
Supporting Information). Moreover, we observed that the abun-
dance of Campylobacter concisus and Veillonella atypica, both were
significantly negatively correlated with steatosis, was also asso-
ciated with the plasma level of metabolites involved in carnitine
metabolism (Figure S3, Dataset S13, Supporting Information).
All associations between the plasma level metabolites and the
abundance of the species in the gut and oral microbiome are
presented in the Supporting Information, Figure S3, and Dataset
S13 in the Supporting Information.

2.8. Inflammatory Proteomics Alterations in the Plasma of
MAFLD Patients

Plasma levels of 94 inflammatory protein markers were mea-
sured by the proteome profiling platform proximity extension as-
say (PEA). After quality control and exclusion of proteins with
missing values in more than 50% of samples, 72 proteins were
analyzed (Dataset S10, Supporting Information). Proteins whose
expression levels significantly differed between groups are pre-
sented in Dataset S11 in the Supporting Information.

Except the plasma level of CDCP1 which is significantly lower
in mild steatosis and significantly higher in severe steatosis ver-
sus no steatosis, majority of the proteins followed the same di-
rectional changes in all steatosis groups (Figure 5B). It has been
reported that CDCP1 knockout mice have increased lipid accu-
mulation in the liver[40] which may explain the downregulation of
CDCP1 in mild steatosis compared with no steatosis in our study.
Besides, CDCP1 also acts as a profibrotic mediator which may
play a central role in subjects with severe steatosis and fibrosis.[41]

We found that the plasma level of TNFRSF9 was significantly
lower in all three steatosis groups versus no steatosis (Figure 5B).
It has been reported that stimulation of TNFRSF9 with agonistic
antibody reduces adiposity, body weight, and HS and increases
energy expenditure in diet-induced obese mice and genetically
obese/diabetic mice.[42] The plasma level of ST1A1, IFN-gamma,
and CCL23 was lower only in mild steatosis versus no steatosis
(Figure 5B). The differences in the mRNA expression of ST1A1
are associated with high-fat diet-induced obesity. The plasma lev-
els of CX3CL1, TNF, CD40, CSF-1, and TWEAK were lower in
moderate steatosis versus no steatosis (Figure 5B). The down-
regulation of CX3CL1/CX3CR1 pathway has been suggested as a
mechanism underlying 𝛽 cell dysfunction in type 2 diabetes.[43] It
has been reported that TNF level contributes HS in diet-induced
obesity,[44] CD40 deficiency in mice exacerbates obesity-induced
HS and insulin resistance,[45] mice lacking CSF-1 have reduced
adiposity,[46] and decreased serum level of TWEAK concentration
is associated with the MAFLD.[47]

The plasma level of NT-3, CCL20, CCL4, CCL3, LIF-R, OPG,
and HGF was higher, and SCF was lower only in the severe steato-
sis versus no steatosis (Figure 5B). It has been shown that the pro-
tein level of CCL20 was increased in MAFLD.[48] An increased
mRNA expression of LIF-R has been demonstrated in high-fat
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Figure 5. A) Heatmap shows the association between the five significantly different clinical variables’ plasma level with the top 10 most significantly
correlated metabolites’ plasma level. Asterisks indicate the statistical significance based on Spearman correlation with p < 0.05. B) Heatmap shows the
Log2FC-based alterations of all the significantly altered inflammation-related proteins in the subjects with mild, moderate, and severe steatosis compared
to the subjects with no steatosis. Asterisks indicate the statistical significance based on t-test with p < 0.05. C) Heatmap shows the association between
the plasma level of the five significantly different clinical variables with the inflammation-related proteins. Asterisks indicate the statistical significance
based on Spearman correlation. p < 0.05. Log2FC: log2(fold change). Cor.coef.: correlation coefficient. All of the 56 samples with different steatosis
groups were used in the correlation analysis.
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diet-induced MAFLD mice.[49] Moreover, increased circulating
levels of HGF have been reported in NASH.[50]

Then we assessed the associations of the significantly differed
five clinical variables with the plasma levels of the inflammation-
related proteins (Figure 5C and Dataset S12, Supporting In-
formation). We identified two main clusters. These variables
were negatively and positively correlated with at least one of the
inflammation-related proteins in the first and second clusters, re-
spectively.

2.9. The Influence of the Microbiome on the Plasma Proteome

In the gut microbiome, we found that the abundances of Copro-
coccus eutactus, Dialister sp CAG 357, Oscillibacter sp 57 20, and
Eubacterium sp CAG 180 were most positively associated with the
inflammatory protein levels (Figure S4, Dataset S14, Supporting
Information). On the other hand, the abundances of Roseburia in-
testinalis, Eubacterium eligens, Parabacteroides distasonis, Roseburia
faecis, Butyrivibrio crossotus, and Prevotella copri were negatively
correlated with the plasma levels of inflammation-related pro-
teins (Figure S4, Dataset S14, Supporting Information). Of note,
the IL10 plasma level was positively correlated with the abun-
dances of Collinsella aerofaciens and Alistipes finegoldii but nega-
tively correlated with the abundances of Roseburia intestinalis, a
primary degrader of dietary fiber[26] (Figure S4, Dataset S14, Sup-
porting Information). In the group with the moderate steatosis,
we found that the abundances of Coprococcus eutactus are posi-
tively correlated with the levels of the inflammatory proteins that
are significantly altered in subjects with severe steatosis.

In the oral microbiome, we found some species within Neisse-
ria, Rothia, and Veillonella were positively associated with the nu-
merous inflammatory proteins (Figure S5, Dataset S14, Support-
ing Information). However, there was a negative correlation be-
tween the abundance of species belonging to the Porphyromonas
and the Prevotella with the inflammation-related proteins (Fig-
ure S5, Dataset S14, Supporting Information). Interestingly, the
abundances of the Neisseria flavescens, Haemophilus parainfluen-
zae, and Campylobacter concisus were also negatively correlated
with inflammation-related proteins (Figure S5, Dataset S14, Sup-
porting Information). Besides, FGF-21 plasma level was nega-
tively correlated with the abundances of Streptococcus mitis and
Tannerella sp oral taxon HOT 286 and IL-6 plasma level was neg-
atively correlated with the abundances of Porphyromonas endodon-
talis (Figure S5, Dataset S14, Supporting Information). Other sig-
nificantly correlated species with plasma inflammation-related
proteins are presented in the Supporting Information, Figure S5,
and Dataset S14 in the Supporting Information.

2.10. Prediction of HS based on Multiomics Data

We analyzed phenomics, metabolomics, proteomics, and
oral/gut metagenomics data and identified features differentiat-
ing between the groups of subjects with varying HS degrees in
the overall cohort with 56 subjects. We performed analyses using
single/multiomics data using the Random Forest algorithm and
discovered the key features associated with HS. First, we used

all individual data points from each omics data (Figure 6A and
Figures S6 and S7, Dataset S15, Supporting Information). We
found that the gut metagenomics data were the top-performing
dataset in the prediction of the steatosis degree, with > 70%
accuracy (area under the curve (AUC): 0.90) (Figure 6A). In
contrast, we found that the inflammatory proteomics data were
the worst-performing data, with only 35.3% accuracy (AUC: 0.72)
(Figure 6A). Next, we tested the top five or ten features from each
omics dataset and tried their different combinations (Figure 6B
and Dataset S15 and Figure S8A–H, Supporting Information).
We observed that the varieties of top features in clinical (five
variables), metabolomics (ten variables), and proteomics (five
variables) yielded 64.7% accuracy (AUC: 0.92) (Figure S8A–F,
Supporting Information), whereas adding gut and oral metage-
nomics (ten top features each) showed the highest accuracy of
94.1% (AUC: 0.951) in the prediction of the steatosis degree
(Figure 6B and Figure S8G–I, Supporting Information). In the
follow-up cohort with 22 subjects, the model yielded 82.7% ac-
curacy (AUC: 0.843) by adding these top features in clinical (five
variables), metabolomics (ten variables), and proteomics (five
variables), and gut and oral metagenomics (ten top features each)
(Figure 6C and Figure S8J, Supporting Information). We had the
highest predictivity of HS (AUC: 1.0) by adding top five features
in clinical, metabolomics, proteomics, gut metagenomics, and
oral metagenomics data in the finding dataset (Figure 6D). We
also validated the predictivity of the final model with 22 subjects
and found that the model yielded a higher predictivity AUC:
0.886) (Figure 6E) with the same key features compared to other
combinations (Figure S8J, Supporting Information).

The top five features in clinical (ALT, AST, uric acid, insulin,
and GGT), metabolomics (N,N-dimethyl-5-aminovalerate,
5-(galactosylhydroxy)-L-lysine, phenol glucuronide, N,N-
dimethylalanine, and N-methyltaurine), proteomics (CDCP1,
CD244, LIF-R, FGF-21, and CXCL9), gut metagenomics (Bar-
nesiella intestinihominis, Dorea longicatena, Prevotella sp CAG
279, Roseburia intestinalis, and Ruminococcus bromii), and oral
metagenomics (Actinomyces naeslundii, Veillonella infantium,
Treponema vincentii, Campylobacter showae, and Campylobacter
concisus) used in prediction of HS can be considered as can-
didate biomarkers for MAFLD (Figure 6F and Dataset S15,
Supporting Information). In our study, we also found that the
abundance of the gut microbiome species including Barnesiella
intestinihominis, Dorea longicatena, and Ruminococcus bromii and
oral microbiome species including Campylobacter concisus and
Veillonella infantium was significantly associated with HS and
reported that their abundance was significantly correlated with
the plasma level of metabolites and inflammatory proteomics
levels.

Some of these markers have been reported and validated in
other studies. In our previous study,[51] we found that the level of
ALT, AST, Insulin, CDCP1, and FGF-21 were significantly pos-
itively correlated with the various ectopic fat depots, including
HS. Moreover, the abundance of gut microbiome species, includ-
ing Dorea logicatena and Ruminococcus bromii, has been reported
as possible markers to predict HS.[12,13] The abundance of oral
microbiome species, including Porphyromonas endodontalis and
Campylobacter concisus, was also significantly negatively corre-
lated with the HS based on previous studies.
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Figure 6. Accuracy score of random forest classification algorithm performed to predict the class using A) single omics and B) multiomics combination
of top features from each omics type in finding (56 subjects) and C) validation (22 subjects) of datasets. Numbers in the brackets represent the number
of top features taken from the single omics data. D) AUC-ROC curve for prediction of HS based on the data from 56 subjects. E) AUC-ROC curve for
validation of the final model in prediction of HS based on the data from 22 subjects. F) Top 25 features from the model with the highest accuracy, C(5)
+ M(5) + P(5) + G(5) + O(5). Analytes that are altered significantly between the groups are marked in bold. G) Composition of each cluster in the
multiomics network.
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2.11. Integrative Analysis of Multiomics Data using Biological
Networks

We generated an integrative multiomics network for showing
the relationships between different analytes within and between
other omics datasets. The network was built using Spearman
correlation analysis (Dataset S16, Supporting Information), be-
tween all analytes from the aforementioned omics data, filtered
by edges with FDR< 0.05, resulting in a relatively sparse network
with 1032 nodes and 17 536 edges (3.3% network density). The
complete network is presented in iNetModels (http://inetmodels.
com), an interactive multiomics networks database and visualiza-
tion. We performed a centrality analysis on the network by calcu-
lating each node’s degree (Dataset S16, Supporting Information).
We found that the top 20 most connected nodes were related
to lipid metabolism, e.g., ceramides, sphingomyelins, diacylglyc-
erol, and phospholipid-related sub-pathways. Similarly, we found
lipid-related clinical variables as top nodes in clinical variables
(total cholesterol, GGT, LDL, and TG-level). In contrast, top in-
flammatory proteomics nodes were STAMBP, TNFSF14, SIRT2,
CXCL5, CXCL1, and CD40, associated with cytokine–cytokine re-
ceptor interaction, and NF-kappa B, TNF, and IL-17 which are
associated with several signaling pathways.

Subsequently, we performed a clustering analysis using the
Leiden community analysis algorithm. We then combined the
smaller clusters (11 clusters with 1–54 analytes) to the next
biggest cluster (cluster-3) to balance the cluster size, resulting in
four clusters to use in further analysis (Figure 6G and Dataset
S16, Supporting Information). We found that all clusters had pos-
itive correlations with each other, except the connection between
cluster-0 and cluster-1 (Figure 6G), based on their shared edges.
Looking at the central analytes in each cluster (Dataset S14, Sup-
porting Information), as expected due to the unbalanced num-
ber of analytes in the clusters, metabolites dominate each clus-
ter’s top analytes. In cluster-0, metabolites related to amino acid
metabolisms were on top, specifically isoleucine and its deriva-
tive and gamma-glutamyl amino acids, together with a clinical
variable, GGT, whereas cluster-1 was dominated by phospholipid,
carbohydrate, and taurine metabolism, followed by the central
proteins. Top 20 most connected metabolites and top clinical vari-
ables mentioned above, were concentrated in cluster-2, which
contained most lipid-related metabolites and clinical variables,
making this cluster as candidate central variables in HS (Dataset
S16, Supporting Information). Finally, we found that cluster-3
contained mostly metabolites related to fatty acid metabolism.
Interestingly, the clustering analysis showed sub-networks with
analytes, which has similar functionality; this shows the power of
biological networks in establishing the functional relationships
between analytes based on the multiomics analysis.

We took the features from our multiomics random forest
model and filtered only the significantly altered analytes, result-
ing in nine analytes fulfilling those requirements (ALT, AST,
GGT, uric acid, CDCP1, LIF-R, Dorea longicatena (gut), Ru-
minococcus bromii (gut), Porphyromonas endodontalis (oral)). Next,
we retrieved the subnetwork with the first neighbor of those fea-
tures as well as HS and overlaid comparative analysis results (fil-
tering p < 0.05) (Figure 7A). We found that those key features re-
lated with HS, and their first neighbors were dominated by lipid
metabolites, gamma-glutamyl amino-acids, BCAA metabolites,

fatty acid metabolism (carnitine derivatives), and glutathione-
related metabolites that are significantly associated with the HS.

Metagenomics data were not included in the multiomics net-
work built previously due to the data’s sparsity that caused dis-
sociation of the network hence reducing the network analysis’s
power. We decided to construct a metagenomics centric network,
by including the key features from random forest analyses and
all microbial species with > 1% abundance in at least five sam-
ples (Figure 7B). We have integrated the complete networks into
iNetModels platform. Similar to the previous approach, we over-
lapped the comparative analysis results (p < 0.05) and retrieved
the sub-network. HS was significantly negatively correlated with
the abundance of Victivallis vadensis, Firmicutes bacterium CAG
95, Slackia isoflavoniconvertens, and Bilophila wadsworthia in the
gut, and Porphyromonas endodontalis and Haemophilus sputorum
in the oral microbiome. Interestingly, the abundance of Slackia
isoflavoniconvertens and Bilophila wadsworthia in the gut also neg-
atively correlated with HS, AST, and GGT levels. Another key
species in the gut microbiome is Streptococcus salivarius, whose
abundance was negatively correlated with ALT, AST, and GGT
levels. On the other hand, the abundance of Dorea longicatena
was negatively correlated with both ALT and AST levels and pos-
itively correlated with numerous members of Bacteroidales and
Clostridiales. We also found that the abundance of Campylobac-
ter concisus is associated with levels of both ALT and CDCP1,
a transmembrane receptor associated with aggressive epithelial
cancers. Additionally, we observed a positive correlation between
AST levels and the abundance of Actinomyces johnsonii in the
oral microbiome. We also observed that abundance of Ruminococ-
cus bromii was significantly positively associated with the level
of uric acid and GGT. Uric acid levels are also negatively corre-
lated with the abundance of specific species in Firmicutes phy-
lum and Bifidobacterium longum and Victivallis vadensis. Based on
these results, the integrative network analysis with multiomics
data strengthened the results from single omics analyses and
added additional power to identify key features associated with
HS. Moreover, it allowed us to reveal functional relationships
within and between different omics data.

3. Discussion

In this study, we presented the key findings of our multiomics
analysis in MAFLD patients (Figure 8). In phenomics, we found
five main phenotypes liver fat, ALT, AST, uric acid, and GGT
which were significantly elevated in moderate and severe steato-
sis groups compared to the no steatosis group (Figure 8). In our
recent MAFLD clinical phase 2 study, we successfully reduced
the liver fat, ALT, AST, and uric acid by the supplementation of
combined metabolic activators (CMAs).[52]

The microbial imbalance has been identified as a key player in
MAFLD’s pathogenesis due to the functional crosstalk between
liver and complex microbial composition.[10a] Microbiota can im-
prove or aggravate liver diseases through several mechanisms,
including enhanced liver lipid metabolism, elevated alcohol pro-
duction, altered energy metabolism, impaired intestinal perme-
ability, and disrupted bile secretion.[53] Previous studies demon-
strated that MAFLD patients had higher TNF-alpha and IL-6 in
the mucosal layer of the intestinal wall[54] and reported larger
quantities of pathogenic bacteria in the gut.[55]

Adv. Sci. 2022, 9, 2104373 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2104373 (14 of 20)

 21983844, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202104373 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [06/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.advancedscience.com

Figure 7. Significantly different first neighbors of significantly different analytes in the best-performing random forest model in the A) multiomics and
B) metagenomics-centric correlation networks.
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Figure 8. The key changes in phenomics, oral and gut microbiome, plasma metabolomics, and plasma proteomics. These analytes are shown since
they are significantly changed at least in one of the HS group compared to the no steatosis group. These parameters correlated with other omics data
based on the network analysis. The arrow represents the significant upregulation or downregulation of a variable in a specific HS group compared with
no steatosis group. * represents that the level of the analyte could be reversed after the supplementation of CMAs in our recent MAFLD clinical phase
2 study.

Our study used shotgun sequencing (enabling enhanced taxo-
nomic resolution) of saliva and feces samples to analyze the com-
position of oral and gut microbiota. We showed that these di-
verse communities are associated with different steatosis levels
in a well-characterized overweight and obese MAFLD cohort. In
the gut microbiome, we identified significant alterations in cer-
tain species following the existing literature; emphasizing that
the abundances of Dorea longicatena were reduced in patients
with steatosis, and the abundances of Slackia isoflavoniconvertens,
Roseburia hominis, and Ruminococcus bromii were reduced in se-
vere steatosis. Some of these species have been proposed to be es-
sential for healthy microbiota homeostasis previously. The abun-
dances of Dorea longicatena have been found to be reduced in
MAFLD-cirrhosis,[8] negatively correlated with the markers of in-
sulin resistance in postmenopausal women with obesity,[13] and
exhibited higher levels in remission of Crohn’s disease.[56] The
abundances of Slackia isoflavoniconvertens, are an equol producer
bacteria by conversion of the soy isoflavone, have been endorsed
as having many favorable effects on the host metabolism;[57] Ru-
minococcus bromii is another beneficial species for human health,
and its abundance was inversely correlated with the fibrosis sever-
ity and primary bile acid levels in nonobese MAFLD subjects. An
interventional animal study suggested a potential role in synthe-

sizing secondary bile acids.[12] Moreover, the abundance of Bar-
nesiella intestinihominis was found to be significantly overrepre-
sented in the stool with a potency to induce MAFLD based on
16S rDNA profiling of mice.[58]

Generation of the metabolomics and proteomics data allowed
for studying the molecular pathways and identifying key fea-
tures associated with the MAFLD progression. We observed that
the metabolites involved in the glutathione metabolism, BCAA
metabolism, and pyrimidine metabolism, which are the key path-
ways in MAFLD, were already altered from HS’s early stage.
In the patients with moderate steatosis, we identified elevated
TMAVA in moderate steatosis group, a biomarker used to pre-
dict gut microbiome change, confirming that TMAVA may be
an essential feature of MAFLD.[59] In our MAFLD clinical phase
2 study, TMAVA was significantly reduced by the supplementa-
tion of CMAs.[52] We found that plasma level of TMAVA was sig-
nificantly positively correlated with the abundance of Bacteroides
stercoris, Bacteroides uniformis, Parabacteroides distasonis and neg-
atively correlated with the abundance of Prevotella copri in the
gut microbiome. The TMAVA plasma level is also significantly
negatively correlated with the abundance of the Veillonella dis-
par and Veillonella atypica, one of the key species associated with
HS, in the oral microbiome. Notably, we identified N,N-dimethyl-
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5-aminovalerate (di-methylated forms TMAVA) as one the most
critical feature in the prediction of MAFLD.

Moreover, we observed that serine and glycine-related metabo-
lites were altered in the severe stage of steatosis, further high-
lighting their crucial roles in MAFLD.[30,33] Serine, one of the
critical component in our CMAs and the glycine-related metabo-
lites (e.g., N-acetylglycine) were significantly increased after the
supplementation of CMAs.[52] Besides, we observed that heme,
the precursor of antioxidant of bilirubin, and bilirubin degra-
dation products were altered in mild and severe steatosis com-
pared with no steatosis, respectively. This suggests that the redox
balance may be changed at the early stage of HS. Based on the
comparison of proteomics data of different degrees of steatosis
versus no steatosis, we observed a decreasing tendency of most
inflammation-related proteins in mild and moderate versus no
steatosis but an increasing trend in the severe steatosis versus no
steatosis.

More commonly, the liver immune tolerance mechanism, pro-
cessing immunosuppressive functions by regulating cytokines
or chemokines’ expression, limits the magnitude of intrahepatic
immune responses and allows the liver to recover.[60] However,
immune tolerance is broken by the further accumulation of fat,
which induces severe steatosis. As a result, enhanced antigen pre-
sentation to lymphocytes associated with the increased expres-
sion of inflammation-related proteins leads to the development
of both cellular and humoral immune responses.[61] Besides, we
observed that the abundance of the species, including Barnesiella
intestinihominis, Oscillibacter sp CAG 241, and Roseburia inulin-
ivorans associated with HS was significantly correlated with the
inflammatory proteomics plasma levels. We also observed that
the abundance of HS-associated species including Campylobacter
concisus (negatively correlated with CXCL9), Porphyromonas en-
dodontalis (negatively correlated with LIF-R), and Veillonella atyp-
ica (positively correlated with CD244) in the oral microbiome was
significantly correlated with the plasma level of the inflammatory
proteomics plasma levels.

A major limitation of this study is that the subjects we recruited
had similar BMI levels. Thus, it is expected that the waist lev-
els are not significantly different between the steatosis groups.
In addition, we did not observe any significant difference for the
glucose and insulin levels between the different steatosis groups.
It may be because the subjects from none and/or mild steatosis
groups have higher variation of levels of glucose and insulin than
the subjects from moderate and severe steatosis groups (Table 1).
Interestingly, the levels of albumin and right arm fat free mass
are significantly increased in mild and/or severe groups, which is
worthwhile to further study its potential mechanism. We would
like to expand the overall sample size in our future work, which
may provide the possibility to analyze the association of hepatic
steatosis with different omics within different BMI, glucose tol-
erance, and age levels as well as different genders.

In conclusion, we performed a multiomics analysis of subjects
with varying degrees of HS and integrated these data using sys-
tems approaches to identify HS’s key features. We revealed the
alterations in the microbial compositions start at early stages of
the clinical spectrum and cause metabolic disturbances under-
lying HS. We also studied the effect of these alterations on the
host metabolism by performing plasma metabolomics, and in-
flammatory proteomics analysis. Hence, we revealed the under-

lying molecular mechanisms involved in the progression of HS.
We envisage that our results can be used to discover prognostic
and predictive clinical markers and develop efficient therapeutic
strategies.

4. Experimental Section
Participants: Overweight or obese patients 18–70 years of age were

enrolled in the trial if they were diagnosed with MAFLD and met all the in-
clusion criteria: BMI >27 kg m−2, triglycerides ≤354 mg dL−1, low-density
lipoprotein cholesterol ≤175 mg dL−1, and increased HS (>5.5%). Pa-
tients were excluded if they carried the PNPLA3 I148M (homozygous for
I148M), had ALT or AST levels >threefold higher than the upper limit of
normal, or had taken oral antidiabetics, including metformin, within 3
months. The main characteristics of the study participants are presented
in Dataset S1 in the Supporting Information.

MRI-PDFF determined HS, and plasma samples for proteomics and
metabolomics analyses were collected (Dataset S1, Supporting Informa-
tion). Patients for this characterization study were recruited at the Koç Uni-
versity Hospital, Istanbul, Turkey (Dataset S1, Supporting Information).
The study was conducted following Good Clinical Practice guidelines and
the principles of the Declaration of Helsinki. An independent external data
monitoring committee oversaw the safety of the participants and the risk-
benefit analysis. Written informed consent was obtained from all partic-
ipants before trial-related procedures were initiated. The Koç University
ethics committee approved the study (Decision no: 2018.351.IRB1.043,
Decision Date: 15 May 2019).

Metagenomics Data Analysis: Fresh stool and saliva specimens were
collected and preserved using DNA/RNA Shield Fecal Collection tubes
(Zymo Research, Irvine, CA) and DNA/RNA Shield Collection Tube (Zymo
Research, Irvine, CA), respectively. DNA extractions from the fecal sam-
ples were done using QIAamp PowerFecal Pro DNA Kit (Qiagen, Hilden,
Germany) and the saliva samples using QIAamp DNA Microbiome Kit (Qi-
agen, Hilden, Germany). All protocol procedures were performed accord-
ing to the manufacturer’s instructions. Quantification of extracted DNA
was determined fluorometrically on the Qubit 3.0 Fluorometer (Thermo
Fisher Scientific, United States) using the QubitTM dsDNA HS Assay
Kit. DNA purity was determined via 260/280 and 260/230 ratios mea-
sured on the NanoDrop 1000 (Thermo Fisher Scientific, United States).
The SMARTer Thruplex DNA-Seq (Takara Bio) was used for library prepa-
ration (Option: 350 bp; Category: low input). Samples were sequenced
on NovaSeq6000 (NovaSeq Control Software 1.7.0/RTA v3.4.4) with a
151nt (Read1)-10nt(Index1)-10nt(Index2)-151nt(Read2) setup using “No-
vaSeqXp” workflow in “S4” mode flow cell. The Bcl to FastQ conversion
was performed using bcl2fastq_v2.20.0.422 from the CASAVA software
suite. The quality scale used was Sanger /phred33/Illumina 1.8+.

Raw paired-end metagenomics data were analyzed using
Metaphlan3[62] to extract each sample’s taxonomic profiles. The abundant
data were then analyzed using the Wilcoxon rank-sum test to identify
the species different between subjects with no steatosis compared to
the other groups. Spearman correlation analysis was used to analyze the
associations between selected analytes and the taxonomic abundance
data. The correlation between oral and gut metagenomics data (by
filtering the species with abundance > 1% in at least five data points)
was used. The SciPy package was used. All analyses were done using
Python 3.

Untargeted Metabolomics Analysis: Plasma samples were collected for
nontargeted metabolite profiling by Metabolon (Durham, NC). The sam-
ples were prepared with an automated system (MicroLab STAR, Hamilton
Company, Reno, NV). For quality control purposes, a recovery standard
was added before the first step of the extraction. To remove protein and dis-
sociated small molecules bound to protein or trapped in the precipitated
protein matrix, and to recover chemically diverse metabolites, proteins
were precipitated with methanol under vigorous shaking for 2 min (Glen
Mills GenoGrinder 2000) and centrifuged. The resulting extract was di-
vided into four fractions: one each for analysis by ultraperformance liquid
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chromatography-tandem mass spectroscopy (UPLC-MS/MS) with posi-
tive ion-mode electrospray ionization, UPLC-MS/MS with negative ion-
mode electrospray ionization, and gas chromatography-mass spectrom-
etry; one fraction was reserved as a backup.

Inflammatory Protein Markers: In the plasma samples, inflammatory
protein markers were determined with the Olink Inflammation panel
(Olink Bioscience, Uppsala, Sweden). Briefly, each sample was incubated
with 92 DNA-labeled antibody pairs (proximity probes). When an antibody
pair bound to its corresponding antigens, the corresponding DNA tails
formed an amplicon by proximity extension, which could be quantified by
high-throughput, real-time polymerase chain reaction (PCR). Probe solu-
tion (3 μL) was mixed with 1 μL of sample and incubated overnight at 4 °C.
Then 96 μL of extension solution containing extension enzyme and PCR
reagents for the preamplification step was added. The extension products
were mixed with detection reagents and primers and loaded on the chip
for qPCR analysis with the BioMark HD System (Fluidigm Corporation,
USA). To minimize inter and intra-run variation, the data were normalized
to both an internal control and an interplate control. Normalized data were
expressed in arbitrary units (Normalized Protein eXpression, NPX) on a
log2 scale and linearized with the formula 2NPX. A high NPX indicated a
high protein concentration. The limit of detection, determined for each of
the 92 assays, was defined as three standard deviations above the negative
control (background).

Statistical Analysis: Values were expressed as the mean ± standard de-
viation (SD) (continuous variables) or as n (%). For all analyses, metabo-
lites and proteins that were missing in > 50% of patients were removed.
Wilcoxon signed-rank test (two-sided) was used to compare the difference
in gut and oral microbiome between different steatosis groups. Student’s
t-test (two-sided) was used to compare the difference in other multiomics
between different steatosis groups. The sample sizes of none, mild, mod-
erate, and severe steatosis group are 10, 14, 20, and 12. All the statistical
analyses are based on these samples. Missing values were dropped be-
fore the analysis. PCA was performed using scikit-learn package. Finally,
Spearman correlation analysis was used to analyze the association be-
tween selected analytes and other datasets (metabolomics and proteins).
The Benjamini–Hochberg method was used to adjust the p values. The
SciPy package was used. All analyses were done using Python 3.7.

Random Forest Analysis: A random forest classification algorithm was
used to find each dataset’s key features and each network cluster. The
analyses were performed using the RandomForestClassifier function from
the scikit-learn package. Several trees were calculated before the analysis
by selecting the highest accuracy with the lowest number of trees (up to
100 trees). Sample bootstrapping and out-of-bag sample options were en-
abled. AUC-ROC (receiver operating characteristic) was generated using
the same module, by combining the classes (no and mild steatosis, and
moderate and severe steatosis)

Generation of Multiomics Network: Multiomics network was generated
based on the Spearman correlations and the significant associations (FDR
< 0.05). The analyses were performed with the SciPy package in Python
3.7. Centrality analysis and Leiden Clustering (community analysis) on
the network were performed using iGraph Python and leidenalg module.
Missing values were omitted in a pairwise manner (using nan_policy =
“omit” option). Networks were visualized using Cytoscape 3.8.2. All net-
works presented on this manuscript can be accessed openly in iNetModels
(http://inetmodels.com).

Code Availability: All code used for the analyses is available in
https://github.com/sysmedicine/nafldBaseline.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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