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Cells have evolved highly intertwined kinase networks to finely tune cellular homeostasis
to the environment. The network converging on the mechanistic target of rapamycin
(MTOR) kinase constitutes a central hub that integrates metabolic signals and adapts cel-
lular metabolism and functions to nutritional changes and stress. Feedforward and feed-
back loops, crosstalks and a plethora of modulators finely balance MTOR-driven anabolic
and catabolic processes. This complexity renders it difficult — if not impossible — to
intuitively decipher signaling dynamics and network topology. Over the last two decades,
systems approaches have emerged as powerful tools to simulate signaling network
dynamics and responses. In this review, we discuss the contribution of systems studies
to the discovery of novel edges and modulators in the MTOR network in healthy cells and
in disease.

Introduction
Kinase signaling networks are a prime example of highly dynamic biological systems whose outputs
cannot be fully understood by a static view of their single components. Over the last years, detailed
molecular studies of signaling proteins have been increasingly complemented with systems approaches
that allow us to understand the dynamic network-tuning arising for instance from interconnected
feedback and feedforward loops [1,2]. Fundamental concepts of signal transduction, linked first to
biology under the term of cybernetics [3,4] and introduced later to cell signaling e.g. by seminal work
of Goldbeter [5], Tyson and Novak [6], are now investigated by a growing community of life
scientists.
In cell signaling research, systems models informed by time-series data are used to simulate the

adaptation of a signaling network to multiple inputs or perturbations, including drug treatments. Such
strategies serve for instance to dissect the convergence of known feedforward and feedback loops on a
common effector to predict the outcome of a drug perturbation. Furthermore, novel network nodes
(e.g. proteins) and connections (e.g. protein–protein interactions) can be postulated and the likelihood
of alternative hypotheses can be compared in a quantitative manner. Simulations of signaling outputs
arising from alternative network topologies can guide the experimentation to test those hypotheses.
Hence, the classical iterative workflow of theoretical and experimental physics is now being translated
to the life sciences, and theoretical and experimental biology and medicine work hand in hand.
The tools and methodologies in theoretical biology are as diverse as in the experimental life sciences

and they are constantly developing according to the specific biological problems that are being investi-
gated. For instance, theoreticians develop new ways to deal with noisy data [7,8] or non-equidistant
dynamic measurements [9–11]. Likewise, experimentalists develop new methods to satisfy the demand
for higher quantitative accuracy [12–14] enabling in turn new modeling approaches [12,15–17] relying
e.g. on absolute quantitative data. Given the complexity and diversity of the questions that are
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addressed by systems biology and medicine, there is no single correct approach to a given problem. Yet, con-
ventions arise for certain problems and the call for standardization becomes increasingly urgent to guarantee
the quality and reproducibility of the scientific results from theoretical and experimental biology [18–21].
Modeling studies are performed based on prior data, and they generate hypotheses that are tested in subse-

quent experiments, which in turn can be incorporated into the models. Such iterative combination of in silico
network modeling with experimental time-series data and validation provides a powerful means to understand
the behavior of biological networks in a feasible time frame and work effort. Given the size of the field and
multiplicity of problems and studies, we won’t attempt a comprehensive overview. Instead, we will outline
recent developments and applications focusing on the signaling networks converging on the metabolic master
regulator MTOR. We discuss systems approaches of the last decade, which identified and experimentally vali-
dated novel edges in the MTOR network, focusing on ordinary differential equation (ODE)-based models con-
stituting the majority of dynamic systems studies on MTOR [1].

The MTOR signaling network
Cells are living systems, which constantly exchange information with their environment. Environmental inputs
are translated into cellular signals that are transmitted through signaling networks to elicit responses that
enable a cell to adapt to its environment. The serine/threonine protein kinase MTOR is at the centre of such a
network which in response to metabolic signals promotes anabolism and inhibits catabolism [22]. A complex
network integrating a multitude of extrinsic and intrinsic cues, intertwined feedback and feedforward mechan-
isms, and multi-level crosstalk with ancillary signaling networks allows to finely adapt MTOR activity and its
downstream processes to the availability of nutrients and to stresses imposed by the environment.
MTOR kinase resides in two distinct multiprotein complexes, termed mTOR complex 1 (mTORC1) and

mTORC2 (reviewed by Saxton and Sabatini [23], and Razquin Navas and Thedieck [24]) (Figure 1). mTORC1
comprises the specific binding partner RPTOR (regulatory associated protein of mTORC1) [25,26] and the
inhibitory subunit AKT1S1 (AKT1 substrate 1) [27–30], while mTORC2 contains the specific binding partners
RICTOR (RPTOR independent companion of mTORC2) [31,32], MAPKAP1 (MAPK associated protein 1)
[33,34] and PRR5/PRR5L (Proline rich 5/like) [28,35]. Both complexes share the interactors MLST8 (MTOR
associated protein, LST8 homolog) [36], TTI1/TELO2 (TELO2 interacting protein 1/telomere maintenance 2)
[37] and the endogenous inhibitor DEPTOR (DEP domain containing MTOR interacting protein) [38]. The
two complexes differ not only in structure but also regarding their substrates and localization (reviewed by Betz
and Hall [39]) and are embedded in two distinct — yet linked — signaling networks. Hence, mTORC1 and 2
regulate cellular processes in different ways (Figure 1). mTORC1 promotes protein synthesis, while inhibiting

Figure 1. MTOR kinase resides in the two distinct multiprotein complexes mTOR complex 1 (mTORC1, yellow) and

mTORC2 (blue).

mTORC1 and mTORC2 specific binding partners are shown in yellow or blue, respectively. Shared interactors are shown in

grey. Selected processes downstream of the two complexes are depicted at the bottom.
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autophagy, ultimately enhancing cell growth and proliferation. mTORC2 links to processes such as cell survival
and glucose homeostasis [23].
Since the discovery of mTORC1 [25,26] and mTORC2 [31,32] in the early 2000’s new modulators and inter-

actions continue to be discovered, forming an ever-growing ramified and multiply-intertwined network. In
recent years, in silico systems biology approaches have emerged as valuable tools to gain a comprehensive
understanding of the topology and dynamic behavior of the MTOR network and identify novel edges by simu-
lating the dynamics of signaling networks converging on mTORC1 and mTORC2.

Finding new edges in the MTOR network
We discuss in the following the response of the MTOR network to growth factors, amino acids and stressors
(reviewed by Liu and Sabatini [22], Razquin Navas and Thedieck [24], Kim and Guan [40], Fu and Hall [41],
Heberle et al. [42]), while highlighting molecular edges whose discovery was aided by computational modeling
(Table 1).

Growth factor signaling to mTORC1
Growth factors such as insulin are sensed by receptor tyrosine kinases. Upstream of mTORC1, the binding of
insulin to the insulin receptor (INSR) results in the recruitment and tyrosine phosphorylation of the insulin
receptor substrate 1 (IRS1) [24,43] (Figure 2). IRS1 is a scaffold for several proteins including the phosphoino-
sitide 3-kinases (PI3K) [44]. The most prominent product of PI3K is phosphatidylinositol (3,4,5)-trisphosphate
(PI(3,4,5)P3) [45]. PI(3,4,5)P3 can be metabolized by the inositol polyphoshphate-5-phosphatases INPP5D
(inositol polyphosphate-5-phosphatase D) and INPPL1 (inositol polyphosphate phosphatase like 1) to phos-
phatidylinositol 3,4-bisphosphate (PI(3,4)P2) [46]. Both PI(3,4,5)P3 and PI(3,4)P2 promote the recruitment of
proteins with a pleckstrin homology (PH) domain to the plasma membrane [46]. This includes the 3-
phosphoinositide dependent protein kinase-1 (PDPK1) and AKT1 (reviewed by Hoxhaj and Manning [47]).
The tumor suppressor PTEN (phosphatase and tensin homolog) functions as a PI3K antagonist to generate
phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and phosphatidylinositol 4-phosphate (PI(4)P) [48]. Upon
PI3K activation and/or PTEN inactivation, PDPK1 is recruited to the plasma membrane and phosphorylates
AKT1 at threonine 308 (AKT1–T308), thus leading to its activation [47]. AKT1 phosphorylates and inhibits
the tuberous sclerosis (TSC) complex [49], as well as AKT1S1 [29,50], both negative regulators of mTORC1
[49,51–55]. The TSC complex comprises of TSC1 (Hamartin, TSC complex subunit 1), TSC2 (Tuberin, TSC
complex subunit 2) and TBC1D7 (TBC1 domain family member 7) [56], and acts a GTPase activating protein
(GAP) for the small GTPase RHEB (RAS homolog mTORC1 binding) [57–60]. When GTP bound, RHEB acti-
vates mTORC1 at the lysosomal surface [61]. mTORC1 phosphorylates a plethora of targets including
RPS6KB1 (ribosomal protein S6 kinase B1) [62] and eIF4E-binding protein 1 (4E-BP1) [63] to promote bio-
synthetic processes and cellular growth.
mTORC1 activation by insulin is tightly balanced by several feedback loops. On the one hand, mTORC1

phosphorylates GRB10 (growth factor receptor-bound protein 10) [64,65], which in turn binds and inhibits the
INSR. On the other hand, the mTORC1 substrate RPS6KB1 phosphorylates and inhibits IRS1 [66,67].
While biochemical studies identified the negative feedback loop from mTORC1/RPS6KB1 to the INSR/PI3K axis
[64–67], computational studies added later a positive feedback loop from mTORC1 to IRS1 [68]. By measuring
and simulating the mTORC1 response to insulin in adipocytes derived from healthy humans or type 2 diabetes
(T2D) patients, Strålfors and colleagues used ODE-based modeling to investigate mechanisms of insulin resist-
ance [68–73] (Table 1; a–e). Based on a series of modeling studies [68–72], they proposed that mTORC1 insensi-
tivity towards insulin in T2D-derived adipocytes can only be simulated when assuming a positive feedback from
mTORC1 to IRS1 (Figure 2). Upon T2D, attenuation of this positive feedback results in insulin insensitivity of
the MTOR network. Whether this positive feedback translates to cellular systems other than adipocytes awaits
further investigation. Also Kuroda and colleagues investigated in a series of modeling studies growth factor sensi-
tivity of AKT1 and its targets in vitro and in vivo [74–77] (Table 1; f–i). They reported that distinct temporal
patterns of growth factor signals to AKT1 (sustained versus pulsed) are selectively decoded by its downstream
targets including mTORC1. While some AKT1 targets reflect a sustained response others reflect a pulsed
response, allowing distinct functional outcomes to be mediated by the same pathway. Kubota et al. [75] also pro-
posed an inhibitory input on RPS6KB1 downstream of AKT1 (Figure 2) leading to a signaling delay. It will be
interesting to explore whether this mechanism involves RPS6KB1 targeting by the phosphatases PHLPP1/2 (PH
domain and leucine rich repeat protein phosphatase 1/2) [78] and/ or PP2A (protein phosphatase 2 A) [79].
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Table 1 Computational studies of the MTOR network Part 1 of 2

ID Title Year Citation Experimental treatment Cell/animal system

a Insulin Signaling in Type 2 Diabetes:
experimental and modeling analyses reveal
mechanisms of insulin resistance in human
adipocytes

2013 Braennmark
et al. [68]

insulin:
- steady state, different concentrations
- time course

primary human mature
adipocytes: healthy and
obese individuals with T2D

b Systems-wide Experimental and Modeling
Analysis of Insulin Signaling through Forkhead
Box Protein O1 (FOXO1) in Human
Adipocytes, Normally and in Type 2 Diabetes

2016 Rajan et al.
[69]

insulin:
- steady state, different concentrations
- time course

primary human mature
adipocytes: healthy and
obese individuals with T2D

c Inhibition of FOXO1 transcription factor in
primary human adipocytes mimics the
insulin-resistant state of type 2 diabetes

2018 Rajan et al.
[70]

insulin:
- steady state, different concentrations
- time course

primary human mature
adipocytes
human adipose-derived
stem cells
both expressed dominant
negative-FOXO1 or
wildtype-FOXO1

d Crosstalks via mTORC2 can explain
enhanced activation in response to insulin in
diabetic patients

2017 Magnusson
et al. [71]

phosphoproteome data from insulin treated
3T3-L1 adipocytes
insulin time course in primary adipocytes

3T3-L1 adipocytes
primary human mature
adipocytes: healthy and
obese individuals with T2D

e A Single Mechanism Can Explain
Network-wide Insulin Resistance in Adipocytes
from Obese Patients with Type 2 Diabetes

2014 Nyman et al.
[72]

insulin stimulation:
- steady state at different concentrations
- time course response

primary human mature
adipocytes: healthy and
obese individuals with T2D

f Decoupling of receptor and downstream
signals in the Akt pathway by its low-pass filter
characteristics

2010 Fujita et al.
[74]

EGF (epidermal growth factor) time course PC-12 cells (rat,
pheochromocytoma)

g Temporal Coding of Insulin Action through
Multiplexing of the AKT Pathway

2012 Kubota et al.
[75]

insulin time course Fao cells (rat, hepatoma)
primary rat hepatocytes
(Wistar rat)

h In Vivo Decoding Mechanisms of the Temporal
Patterns of Blood Insulin by the Insulin-AKT
Pathway in the Liver

2018 Kubota et al.
[76]

hyperinsulinemic-euglycemic clamp
conditions:
insulin administration; glucose and
somatostatin administration to suppress
endogenous insulin secretion

male SD (Sprague Dawley)
rats

i Sensitivity control through attenuation of signal
transfer efficiency by negative regulation of
cellular signaling

2012 Toyoshima
et al. [77]

EGF time course
NGF (nerve growth factor) time course

PC-12 cells (rat,
pheochromocytoma)
HeLa cells (human, cervical
cancer)
Swiss 3T3 cells (mouse,
embryonic fibroblasts)
HUVEC cells (human,
umbilical vein/vascular
endothelium)

j A Dynamic Network Model of mTOR Signaling
Reveals TSC-Independent mTORC2
Regulation

2012 Dalle Pezze
et al. [86]

insulin and amino acids time course HeLa alpha Kyoto cells
(human, cervical cancer)
C2C12 cells (mouse,
myoblasts)

k Insulin Signaling in Insulin Resistance States
and Cancer: A Modeling Analysis

2016 Bertuzzi et al.
[101]

insulin, different concentrations, steady state
in C2C12 cells
treatment of L6 myotubes with medium
enriched by proteins secreted by jejunal
mucosa of non-diabetic mice versus medium
enriched by proteins secreted by the mucosa
of diabetic (db/db) mice

C2C12 cells (mouse,
myoblasts)
L6 cells (rat, myotubes)

Continued
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Growth factor signaling to mTORC2
The signaling cascade activating mTORC2 upon growth factor stimulation (Figure 2) is currently under debate.
Two studies proposed that mTORC2 activation by growth factors directly depends on PI3K-derived PI(3,4,5)P3
and PI(3,5)P2 [80,81]. Gan et al. [80] suggested that the mTORC2 component MAPKAP1 binds via its PH
domain to PI(3,4,5)P3 at the plasma membrane. MAPKAP1-PI(3,4,5)P3 binding ablates an auto-inhibition and
results in mTORC2 activation. Ebner et al. [81] found by live-cell imaging that mTORC2 activation only par-
tially depends on PI3K, whereas another mTORC2 subpopulation at the plasma membrane is constitutively
active. Also downstream of PI3K, the molecular mechanism regulating mTORC2 was discussed, with three
modes of activation being proposed: (i) mTORC2 activation, downstream of PI3K/AKT1, directly depends on
the TSC complex but is independent of the TSC complex’ GAP activity towards RHEB [82,83]; (ii) mTORC2
activation is indirectly regulated by the TSC complex, as its ablation induces an mTORC1-driven negative feed-
back on PI3K [84]; (iii) mTORC2 activation is independent of the TSC complex as mTORC2 enhances cell
proliferation also in TSC2 knockout cells [85]. While it proved difficult to clarify the mode of mTORC2 activa-
tion by experiments only, data-driven ODE-based modeling [86] (Table 1; j) suggested that mTORC2 is
neither directly nor indirectly activated by the TSC complex. Instead, mTORC2 is activated through a PI3K
variant, which is independent of the negative feedback from mTORC1 (Figure 2). While insulin signaling to
mTORC1 and 2 is separate at the level of PI3K, the two mTOR complexes are intertwined further downstream.
RPS6KB1 downstream of mTORC1 phosphorylates RICTOR at threonine 1135 thus inhibiting mTORC2 [87–
89]. Phosphorylation of MAPKAP1 at threonine 86 (MAPKAP1-T86) by AKT1 [90–92] and RPS6KB1 [90]
has been proposed to alter mTORC2 activity, but it is unclear whether MAPKAP1-T86 phosphorylation is acti-
vating [91,92] or inhibitory [90]. In these studies, insulin dependent AKT1–pS473, downstream of mTORC2,
was monitored while expressing mutagenized MAPKAP1-T86A. Whereas AKT1–pS473 was reduced after
10 min [91], it was enhanced after 30 min [90]. Thus, the discrepancy might come from measurements at

Table 1 Computational studies of the MTOR network Part 2 of 2

ID Title Year Citation Experimental treatment Cell/animal system

l A systems study reveals concurrent activation
of AMPK and mTOR by amino acids

2016 Dalle Pezze
et al. [108]

insulin and amino acids time course
amino acids time course

C2C12 cells (mouse,
myoblasts)
HeLa alpha Kyoto cells
(human, cervical cancer)
MEF cells (mouse
embryonic fibroblasts)

m A modeling-experimental approach reveals
insulin receptor substrate (IRS)-dependent
regulation of adenosine
monosphosphate-dependent kinase (AMPK)
by insulin

2012 Sonntag et al.
[113]

insulin and amino acids time course HeLa alpha Kyoto (human,
cervical cancer)
C2C12 (mouse, myoblasts)

n Dynamics of Elongation Factor 2 Kinase
Regulation in Cortical Neurons in Response to
Synaptic Activity

2015 Kenney et al.
[114]

bicuculline time course primary neuronal culture
from P0 or P1 C57BL/6J
mice

o Systems-level feedbacks of NRF2 controlling
autophagy upon oxidative stress response

2018 Kapuy et al.
[115]

oxidative stress (data not shown) human cells (not further
specified)

p Computational modeling of the regulation of
Insulin signaling by oxidative stress

2013 Smith and
Shanley [122]

in silico study in silico study

q The PI3K and MAPK/p38 pathways control
stress granule assembly in a hierarchical
manner

2019 Heberle et al.
[123]

arsenite time course MCF-7 cells (human, breast
cancer)
HeLa alpha Kyoto cells
(human, cervical cancer)
CAL51 cells (human, breast
cancer)
HEK293T cells (human
embrionic kidney cells)
LN18 cells (human,
glioblastoma)
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different points of the signaling dynamic, and time course based computational modeling might be a suitable
means to solve this issue. Another reason for the discrepancy might be the use of double [90] versus single
[91] MAPKAP1 mutants, and thus also the interaction of different MAPKAP1 phosphorylation sites in mediat-
ing mTORC2-driven AKT1 phosphorylation dynamics might be worth investigating in future systems studies.
While these approaches still await their realization, several computational studies have addressed the intercon-
nection between mTORC1 and mTORC2. Magnusson et al. [71] (Table 1; d) dissected insulin-mediated
mTORC1–mTORC2 crosstalk in the context of T2D. In adipocytes derived from T2D patients,
mTORC2-mediated AKT1–pS473 was increased and mTORC1 activity was decreased as compared with adipo-
cytes from non-diabetic humans. This behavior could be simulated by introducing a connection from
RPS6KB1 to RICTOR that inhibits mTORC2, supporting the findings of several preceding experimental studies
[87–89]. Also a possible connection between AKT1 and mTORC2 was addressed but could not be confirmed
or refuted [71].
mTORC2 phosphorylates several AGC kinases including AKT1 [93], serum/glucocorticoid regulated kinase

1 (SGK1, [94]), and protein kinase C proteins (PRKCs; [95]). The activation of AGC kinases requires two phos-
phorylation events, one in the activation loop mediated by PDPK1 and the other in the hydrophobic motif,
mediated by different kinases including mTORC2 (reviewed by Manning and Toker [96] and Pearce et al.
[97]). The most widely used readout for mTORC2 activity is AKT1 phosphorylation at S473, but it has to be
interpreted with caution as it can be influenced through conformational changes induced by phosphorylation
at the activation loop [97]. Thus, the PDPK1 target site AKT1–T308 should be co-monitored to control for
possible effects on the mTORC2 substrate site.
As AKT1 is targeted by mTORC2 and activates mTORC1, it is often proposed that mTORC2 is upstream of

mTORC1 [22,40,96,98]. However, this hypothesis was challenged already early after mTORC2’s discovery, as
RICTOR knockout mice with abolished AKT1-S473 phosphorylation did not show changes in mTORC1 activ-
ity [99,100]. To the best of our knowledge, there is so far no evidence that mTORC2 activates mTORC1 via
AKT1. This notion is also supported by a computational study [101] (Table 1; k), which dissected the regula-
tion of mTORC1 by single (T308 or S473) or double (T308 and S473) phosphorylated AKT1 species and the

Figure 2. Growth factor (insulin) and nutrient (amino acids) signaling to the two MTOR complexes.

Shown in red are edges described by computational studies in the last decade (Table 1).
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relevance thereof in insulin resistance, cell cycle progression and cell death. Bertuzzi et al. [101] showed that
single phosphorylation of AKT1–T308 is sufficient for full mTORC1 activation. Furthermore, AKT1–pS473
was detectable when PI3K was inactive and AKT1–T308 was dephosphorylated. This suggests that at least in
some contexts, the two phosphorylation events are independent and determine substrate specificity rather than
activity of AKT1 [33,99,102].
Further computational studies dissected forkhead box O1 (FOXO1) regulation by mTORC1 and mTORC2

in the context of insulin resistance in T2D [69,70] (Table 1; b,c). FOXO1 is an insulin-responsive transcription
factor [103]. AKT1 — downstream of mTORC2 — phosphorylates and inhibits FOXO1, resulting in its rapid
exclusion from the nucleus. In an experimental-computational approach, Rajan et al. [69,70] showed that
reduced levels of AKT1-mediated FOXO1–S256 phosphorylation in T2D can be recapitulated by a model in
which mTORC1 inhibition results in decreased FOXO1 translation. This finding was surprising as mTORC2
had been considered the main regulator of the AKT1-FOXO1 axis, and it suggests that in T2D signaling to
FOXO1 shifts from mTORC2 to mTORC1.

Amino acid signaling to MTOR
In response to amino acids, mTORC1 translocates to the surface of the lysosomes where it encounters its acti-
vator RHEB [59]. Hence, the lysosomal surface is considered as the main site of mTORC1 activation by amino
acids (reviewed by Kim and Guan [40], and Liu and Sabatini [22]). The lysosomal translocation of mTORC1 is
mediated by a complex machinery, which includes the RRAG GTPases (Ras-related GTP-binding) [104,105]
and the Ragulator complex [61,106,107], a pentamer consisting of LAMTOR 1 to 5 (late endosomal/lysosomal
adaptor, MAPK and MTOR activator 1 to 5) [106]. When active, the RRAG GTPases form heterodimers con-
sisting of GTP-bound RRAGA or RRAGB with GDP-bound RRAGC or RRAGD [22,40]. Activation of the
RRAG complexes involves different amino acid sensors [40]. Thus, lysosomal translocation is considered the
main mTORC1 activating mechanism upon amino acid stimulation. However, a computational-experimental
study which considered only one amino acid input directly impinging on mTORC1, thus mimicking mTORC1
lysosomal localization, could not recapitulate the amino acid-induced dynamics of the MTOR network [108].
Taking advantage of a combination of experimentation, ODE modeling, and text mining-enhanced quantitative
proteomics, Dalle Pezze et al. [108] identified three additional amino acid inputs to the network, namely (i)
mTORC2, (ii) PI3K, upstream of mTORC1, and (iii) AMP-activated protein kinase (AMPK) (Table 1; l,
Figure 2). The latter observation was surprising as AMPK is canonically considered to be activated by nutrient
deficiency and energy shortage (reviewed by Gonzalez et al. [109]). AMPK promotes catabolism (autophagy)
by phosphorylating unc-51 like autophagy activating kinase 1 (ULK1) [110], and inhibits anabolism by phos-
phorylating TSC2 [111], and RPTOR [112]. Hence, AMPK and mTORC1 are typically considered as antago-
nists whose activity is mutually exclusive. However, four systems studies [108,113–115] (Table 1; l–o) showed
that AMPK and mTORC1 are concomitantly activated. This discovery was probably due to the use of time-
course data, as is typical for dynamic modeling studies, covering time points at which both kinases are active.
Earlier, experimental studies relied on measurements at single or few time points, being the likely reason for
missing concurrent AMPK and mTORC1 activity [116–118], highlighting the critical importance of the itera-
tive combination of in silico network modeling with time series data to unravel signaling crosstalk. What is the
biological importance of concomitant AMPK and mTORC1 activity? Dalle Pezze et al. [108] proposed that
AMPK-driven catabolism is required to sustain the pools of intermediary metabolites for mTORC1-mediated
anabolic processes. Kenney et al. [114] suggested that in neurons AMPK and mTORC1 converge on the
eukaryotic elongation factor 2 kinase (EEF2K) to balance its activity and tightly control translation and synaptic
function.

Stress signaling to MTOR
Next to metabolic signals, MTOR responds to numerous stressors including nutritional, oxidative, endoplasmic
reticulum, and hypoxic stress [23,42]. The multitude of mechanisms transducing different stresses to mTORC1
have been reviewed by Heberle et al. [42]. Although stress inputs are often considered as inhibitory [42,119–
121], also mechanisms activating mTORC1 have been reported (Figure 3). In an in silico analysis Smith and
Shanley [122] suggested that chronic stress is inhibitory, while acute stress activates mTORC1 (Table 1; p).
They analyzed these conditions with regard to insulin-induced dynamics on INSR, PI3K, AKT1 and FOXO1
and proposed that acute oxidative stress sensitizes the pathway to insulin while sustained oxidative stress results
in the inhibition of the insulin response. Another computational-experimental study analyzed activating inputs
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on mTORC1 during acute stress upon sodium arsenite exposure [123] and identified PI3K and the MAP
kinase p38 (MAPKAP14) as two major stress-responsive kinases that activate mTORC1 (Table 1; q, Figure 3).
Dynamic modeling revealed a hierarchy between the two inputs, with PI3K being the pre-dominant mTORC1
activator and MAPKAP14 taking over when PI3K activity dropped.

Conclusion
Systems studies have uncovered new crosstalk and mechanisms in the MTOR network. Thus, they complement
experimental approaches and open new avenues to hypothesis building and testing in metabolic signaling. Next
to applications in basic research, systems approaches are currently also being developed for medical applications
[124,125]. Major funding initiatives for systems medicine are ongoing at both national and European level. The
MTOR network is targeted directly and indirectly by many clinically approved small compounds [125]. Hence,
patient specific and clinically validated MTOR network models might serve in the future to support therapy
decisions for the treatment of cancer and other diseases [124,126] characterized by aberrant MTOR activity
[22]. While some patents protect such applications for commercial use [127,128], they await their clinical valid-
ation. An important step in this direction will be the further development of criteria by the drug agencies to
establish the credibility of computational tools for regulatory and clinical use [129].

Perspectives
• Systems modeling complements experimental biology for hypothesis building and testing in

metabolic signaling.

Figure 3. Stress signaling to mTORC1.

Shown in red are edges described by computational studies (Table 1).
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• Systems approaches constitute powerful tools to decipher complex network topologies and
signaling dynamics upstream and downstream of MTOR.

• Computational models of metabolic signaling hold promise for applications in systems
medicine.
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