

Dynamic modelling of metabolism

Model construction and enzyme kinetics

We are all here to learn and discuss!

Principles of dynamic modelling

- a. Model construction
- b. Enzyme kinetics

The Systems Biology cycle

Computational modelling (dynamic)

Simulating concentration of metabolite X in time

$$d[X]/dt = v_{supply}(e_{supply}, X) - v_{demand}(e_{demand}, X)$$

Computational modelling (steady state)

Kinetic information allows to predict steady-state flux and concentration

Dynamic models: the challenge

$$d[X_{1}]/dt = v_{1} - v_{2}$$
...
$$d[X_{4}]/dt = v_{4} - v_{5} - v_{8}$$
...
$$d[Y_{1}]/dt = -v_{5} + v_{8}$$

$$d[Y_{2}]/dt = +v_{5} - v_{8}$$

Velocities (v) depend on concentrations (X)

Steady state

Metabolite X is at steady state if the rate of enzyme 1 (v_1) equals the rate of enzyme 2 (v_2) \rightarrow Production equals consumption.

What is required to obtain a steady state?

- 1. Concentrations of S and P are constant or external source / sink
- 2. Stability of the steady state

Stability of a steady state

A stable steady state:

(In)stability of a steady state

Dynamic model

To simulate (predict) how concentrations and rates in a pathway behave in time; and in which steady state they may settle.

Construction of a computer model

Pathway stoichiometry

Enzyme kinetics

 $S \longrightarrow X \longrightarrow P$

rate of enzyme 1 = $v_1(e_1, S, X)$ rate of enzyme 2 = $v_2(e_2, X, P)$

Prediction of dynamics

$$S \longrightarrow X \longrightarrow P$$

$$d[X]/dt = v_1(e_1, S, X) - v_2(e_2, X, P)$$

 \rightarrow Prediction of X(t) and v(t) at given S, P, e_1 and e_2

Rate equations

Classical Michaelis-Menten kinetics

If [S] >>
$$K_M$$
, then $v = V_{max}$.

If [S] =
$$K_M$$
, then $v = \frac{1}{2} V_{max}$.

Classical MM kinetics in a pathway

 $S \longrightarrow X \longrightarrow P$

Example 1: Steady state

Steady state

v1 = v2

[X] = constant

Classical MM kinetics in a pathway

Example 2: Steady state at high [X]

Classical MM kinetics in a pathway

Example 3: No steady state

Product inhibition 'saves' the steady state

Example 4: Product inhibition

Enzymes 'communicate' via metabolite concentrations.

Reversible enzyme reactions (1)

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

$$v = \frac{V_{+max} \cdot \frac{[S]}{K_{MS}} - V_{-max} \cdot \frac{[P]}{K_{MP}}}{1 + \frac{[S]}{K_{MS}} + \frac{[P]}{K_{MP}}}$$

$$V_{+max} = k_2 \cdot [E_{tot}]$$
 $K_{MS} = (k_{-1} + k_2) / k_1$

$$V_{-max} = k_{-1} \cdot [E_{tot}]$$
 $K_{MP} = (k_{-1} + k_2) / k_{-2}$

The equation if symmetrical, like the reaction scheme.

An increase of the enzyme concentration leads to a proportional increase of V_{-max} and V_{-max} (\rightarrow effect of gene expression)

Reversible enzyme reactions (2)

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

$$v = \frac{V_{+max} \cdot \frac{[S]}{K_{MS}} - V_{-max} \cdot \frac{[P]}{K_{MP}}}{1 + \frac{[S]}{K_{MS}} + \frac{[P]}{K_{MP}}}$$

If [P] = 0, the equation reduces to the original Michaelis-Menten equation:

$$v = \frac{V_{+max} \cdot \frac{[S]}{K_{MS}}}{1 + \frac{[S]}{K_{MS}}} = \frac{V_{+max} \cdot [S]}{K_{MS} + [S]}$$

Reversible enzyme kinetics (2)

If [P] = 0, the equation reduces to the original Michaelis-Menten equation:

$$v = \frac{V_{+\text{max}} \cdot \frac{[S]}{K_{MS}}}{1 + \frac{[S]}{K_{MS}}} = \frac{V_{+\text{max}} \cdot [S]}{K_{MS} + [S]}$$

Reversible enzyme kinetics (3)

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

$$v = \frac{V_{+max} \cdot \frac{[S]}{K_{MS}} - V_{-max} \cdot \frac{[P]}{K_{MP}}}{1 + \frac{[S]}{K_{MS}} + \frac{[P]}{K_{MP}}}$$

If [S] = 0, the equation also reduces to the original Michaelis-Menten equation, but in the reverse direction and as a function of [P]:

$$v = -\frac{V_{-max} \cdot \frac{[P]}{K_{MP}}}{1 + \frac{[P]}{K_{MP}}} = -\frac{V_{-max} \cdot [P]}{K_{MP} + [P]}$$

Reversible enzyme kinetics (3)

If [S] = 0, the equation also reduces to the original Michaelis-Menten equation, but in the reverse direction and as a function of [P]:

$$v = -\frac{V_{-max} \cdot \frac{[P]}{K_{MP}}}{1 + \frac{[P]}{K_{MP}}} = -\frac{V_{-max} \cdot [P]}{K_{MP} + [P]}$$

The Haldane relation

$$v = \frac{V_{+max} \cdot \frac{[S]}{K_{MS}} - V_{-max} \cdot \frac{[P]}{K_{MP}}}{1 + \frac{[S]}{K_{MS}} + \frac{[P]}{K_{MP}}}$$
Equation 1

At thermodynamic equilibrium: $[P]/[S] = K_{eq}$ AND v = 0

It follows that:
$$K_{eq} = \frac{V_{+max}}{K_{MS}} \cdot \frac{K_{MP}}{V_{-max}}$$
 Equation 2 (the Haldane relation)

$$v = \frac{V_{+\text{max}} \frac{[S]}{K_{\text{MS}}} \left(1 - \frac{[P]}{[S]} / K_{\text{eq}}\right)}{1 + \frac{[S]}{K_{\text{MS}}} + \frac{[P]}{K_{\text{MP}}}}$$
Equation 3

This is another way of writing the above discussed 'reversible Michaelis-Menten' equation.

Product sensitivity

$$v = \frac{V_{+\text{max}} \frac{[S]}{K_{\text{MS}}} \left(1 - \frac{[P]}{[S]} / K_{eq}\right)}{1 + \frac{[S]}{K_{\text{MS}}} + \frac{[P]}{K_{\text{MP}}}}$$

Product sensitivity

Full-scale kinetic model

$$d[glucose]/dt = v_1(e_1, X) - v_2(e_2, X)$$

$$d[Glc6P]/dt = v_2(e_2, \mathbf{X}) - v_3(e_3, \mathbf{X})$$

$$d[Fru6P]/dt = v_3(e_3, \mathbf{X}) - v_4(e_4, \mathbf{X})$$

••••

•••

....

$$d[ATP]/dt = -v_2(e_2, \mathbf{X}) - v_4(e_4, \mathbf{X}) + v_8(e_8, \mathbf{X}) + v_{11}(e_{11}, \mathbf{X}) - v_{12}(e_{12}, \mathbf{X}) + v_{13}(e_{13}, \mathbf{X})$$

Numerical solution

$$d[glucose]/dt = v_1(e_1, \mathbf{X}) - v_2(e_2, \mathbf{X})$$

$$d[Glc6P]/dt = v_2(e_2, \mathbf{X}) - v_3(e_3, \mathbf{X})$$

...

Each rate may depend on multiple concentrations, which in turn depend on multiple rates

Euler approximation

- Calculate rates at time t
- Predict concentrations at next time point
- Recalculate rates
- Iterative procedure → computer power!

Solvers (non-exhaustive)

Euler: one step method

Runge-Kutta: takes intermediate steps

Adams: uses information from previous steps

'Non-stiff' problems

BDF (backward differentiation formula) / Gear — 'Stiff' problems

LSODA: switches during the simulation between Adams (non-stiff, fast) and BDF (stiff, more expensive in computer time, more stable)

Finding the steady state

$$S \longrightarrow X \longrightarrow P$$

$$d[X]/dt = v_1(e_1, S, X) - v_2(e_2, X, P)$$

At steady state d[X]/dt = 0

 \rightarrow Find X for which: $v_1(e_1, S, X) - v_2(e_2, X, P) = 0$

Steady state of the full-scale kinetic model

$$d[glucose]/dt = v_1(e_1, \mathbf{X}) - v_2(e_2, \mathbf{X}) = 0$$

$$d[GIc6P]/dt = v_2(e_2, \mathbf{X}) - v_3(e_3, \mathbf{X}) = 0$$

$$d[Fru6P]/dt = v_3(e_3, \mathbf{X}) - v_4(e_4, \mathbf{X}) = 0$$

$$X = ([glucose], [Glc6P], [Fru6P],...[ATP])$$
 \rightarrow Find X for which $dX/dt = 0$

....

$$d[ATP]/dt = -v_2(e_2, \mathbf{X}) - v_4(e_4, \mathbf{X}) + v_8(e_8, \mathbf{X}) + v_{11}(e_{11}, \mathbf{X}) - v_{12}(e_{12}, \mathbf{X}) + v_{13}(e_{13}, \mathbf{X}) = 0$$

Numerical root finding algorithm

- $\mathbf{X} = (X_1, X_2, ...X_n) \rightarrow \text{many dimensions}$
- Iterative procedure → computer power

Enzyme kinetics

Model parameters

For a metabolic model typically:

- Kinetic parameters: V_{max}, K_m, ...
- Equilibrium constants
- Enzyme concentrations
- Compartment volumes
- Conserved moieties (e.g. [ATP] + [ADP] + [AMP] = constant)

Enzyme kinetic databases

Equilibrium constants

http://equilibrator.weizmann.ac.il/

1. Independent biochemical analysis

2. Parameter fitting

Dynamic modeling of the EpoR system.

Modelling 'schools'

1. Independent biochemical measurement of parameters

Biochemical school, accessible parameters (e.g. enzyme kinetics),

Number of parameters too large for fitting, aim of the model

2. Parameter fitting

Engineering school, parameters not directly accessible (e.g. protein-

protein interactions in signalling, number of parameters small)

Classical example: glycolysis in bakers' yeast

- Compare new data to independent model prediction
- Independent biochemical analysis of parameters
- Special feature: the assay medium mimicked the cytosolic environment of the cells

OPEN & ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Testing Biochemistry Revisited: How In Vivo Metabolism Can Be Understood from In Vitro Enzyme Kinetics

Karen van Eunen^{1,2,3}, José A. L. Kiewiet^{1,2}, Hans V. Westerhoff^{1,2,4,5}, Barbara M. Bakker^{1,2,3}*

1 Department of Molecular Cell Physiology, VU University Amsterdam, Amsterdam, The Netherlands, 2 Kluyver Centre for Genomics of Industrial Fermentation, Delft, The Netherlands, 3 Department of Pediatrics, Center for Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands, 4 Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary BioCentre, The University of Manchester, Manchester, United Kingdom, 5 Synthetic Systems Biology, Netherlands Institute for Systems Biology, University of Amsterdam, Amsterdam, The Netherlands

Classical example: glycolysis in bakers' yeast

- V_{max} values measured in samples from yeast chemostat culture D=0.1 h⁻¹
- → inserted in model → prediction of metabolite concentrations and fluxes
- Independent measurement of metabolite concentrations and fluxes

Classical example: glycolysis in bakers' yeast

The model gives reasonable predictions for 4 independent culture conditions

Classical example: glycolysis in bakers' yeast

Enzyme inhibition

Competitive enzyme inhibition

$$v = \frac{V_{+\text{max}} \frac{[S]}{K_{\text{MS}}} \left(1 - \frac{[P]}{[S]} / K_{eq} \right)}{1 + \frac{[S]}{K_{\text{MS}}} + \frac{[P]}{K_{\text{MP}}} + \frac{[I]}{K_{I}}}$$

Uncompetitive enzyme inhibition

$$v = \frac{V_{\text{max, app}} \frac{[S]}{K_{\text{MS,app}}} \left(1 - \frac{[P]}{[S]} / K_{eq}\right)}{1 + \frac{[S]}{K_{\text{MS,app}}} + \frac{[P]}{K_{\text{MP,app}}}}$$

$$V_{\text{max,app}} = V_{\text{max}}/(1+[I]/K_i)$$

$$K_{MS,app} = K_{MS}/(1+[I]/K_i)$$

$$K_{MP,app} = K_{MP}/(1+[I]/K_i)$$

2-substrate 2-product reaction

2-substrate 2-product reaction

$$S_1 + S_2 \longrightarrow P_1 + P_2$$

$$v = \frac{V_{+\text{max}} \frac{[S_1]}{K_{\text{MS}_1}} \cdot \frac{[S_2]}{K_{\text{MS}_2}} \left(1 - \frac{[P_1] \cdot [P_2]}{[S_1] \cdot [S_2]} / K_{eq} \right)}{\left(1 + \frac{[S_1]}{K_{\text{MS}_1}} + \frac{[P_1]}{K_{\text{MP}_1}} \right) \cdot \left(1 + \frac{[S_2]}{K_{\text{MS}_2}} + \frac{[P_2]}{K_{\text{MP}_2}} \right)}$$

2-substrate 2-product reaction with competitive inhibitor

$$S_1 + S_2 \longrightarrow P_1 + P_2$$

competitive inhibitor

$$v = \frac{V_{+\text{max}} \frac{[S_1]}{K_{\text{MS}_1}} \cdot \frac{[S_2]}{K_{\text{MS}_2}} \left(1 - \frac{[P_1] \cdot [P_2]}{[S_1] \cdot [S_2]} / K_{eq} \right)}{\left(1 + \frac{[S_1]}{K_{\text{MS}_1}} + \frac{[P_1]}{K_{\text{MP}_1}} + \frac{[I]}{K_{\text{I}}} \right) \cdot \left(1 + \frac{[S_2]}{K_{\text{MS}_2}} + \frac{[P_2]}{K_{\text{MP}_2}} \right)}$$

Model databases

Biomodels

JWS online

Both deliver models in the SBML format (systems biology markup language)

Implementation in JWS Online

Interactive modelling database at: http://jjj.biochem.sun.ac.za/

Tutorial!

