

IN VIVO SYSTEMS TO STUDY GLYCOGEN STORAGE DISEASE TYPE 1 (GSD I)

PoLiMeR Teaching Event August 31 2021, Innsbruck

Maaike H. Oosterveer PhD

Department of Pediatrics Centre for Liver Digestive and Metabolic Diseases University Medical Center Groningen The Netherlands

m.h.oosterveer@umcg.nl

Glucose metabolism after feeding: glucose consumption

Glucose metabolism upon fasting: glucose production

Sources of endogenous glucose production upon fasting

Glucose-6-phosphatase (G6PC) mediates the final step of glycogen breakdown and gluconeogenesis

Endogenous glucose production

Glycogen Storage Disease type 1 (GSD I): endogenous glucose production is impaired

- Inborn Error of Metabolism, overall 1:100,000
 Type Ia: *G6PC1* mutations
 Typa Ib: *SLC37A4* mutations
- G6PC1 is expressed in liver, kidney, intestine
- SLC37A4 is ubiquitously expressed

Biochemical symptoms

Low blood glucose levels (fasting, fever, ..) Enlarged liver, enlarged kidney Fatty liver disease High blood lipid levels High blood lactate levels High blood uric acid levels

Biochemical symptoms G6P Low blood glucose levels (fasting, fever, ..) (glycogenolysis, Enlarged liver, enlarged kidney gluconeogenesis) Fatty liver disease High blood lipid levels **GSD Ib** High blood lactate levels High blood uric acid levels GL 7 G6P glucose -**GSD** la **Dietary management** Gastric drip feeding

glucose

A feeding tube supplies food or medicine directly to the stomach

Feeding tube

Trachea

Esophagus

-Stomach

Uncooked cornstarch (every 2-4 hour)

-> effective to reduce mortality, but does not prevent GSD I complications!

Long-term complications Growth retardation Epilepsy Osteoporosis Gout Abdominal obesity **Renal failure** Pulmonary hypertension PCOS Anemia Platelet dysfunction Neutropenia (GSD lb) Inflammatory Bowel Disease (GSD lb) Periodontitis (GSD Ib)

Long-term complications Growth retardation Epilepsy Osteoporosis Gout Abdominal obesity **Renal failure** Pulmonary hypertension PCOS Anemia Platelet dysfunction Neutropenia (GSD lb) Inflammatory Bowel Disease (GSD lb) Periodontitis (GSD Ib) Liver tumors (>2/3 patients)

GSD I research agenda

improving care for and quality of life of GSD I patients

- Developing methods to improve (home-side) monitoring of GSD I symptoms and signs
- Understanding differences in severity of/risk for symptoms/complications between individual patients
- Elucidating the mechanisms of biochemical symptoms and longterm complications
- Establishing the relationship between biochemical symptoms and long-term complications
- Developing preventive/curative treatments for GSD I

In vivo models for GSD I research

- Clinical research: restricted by age and vurnerability of patients, patient numbers, access to relevant organ tissues, ethical considerations
- To ensure long term efficacy and **safety**: preclinical research essential!
- Animal models

allow to investigate genetic defect in relation to GSD I symptoms and complications enable systematic experimentation, collection of relevant organ tissues

• Available animal models

transgenic mouse (>1996 (Ia); >2003 (Ib)) and (natural point mutation) dogs (>2001) acute pharmacological model for GSD Ib: S4048 (>2001)

In vivo models for GSD I research

• Genetic animal models: deficiency/inactivation of G6PC/SLC37A4 in all cells/organs recapitulate severe biochemical symptoms

- GSD Ia mice/dogs and GSD Ib mice require daily glucose injections for survival
- GSD I mice/dogs have a limited lifespan -> limits research on long-term complications

Cre-loxP system

loxP sequence (34 bp) 5'-ATAACTTCGTATANNNTANNNTATACGAAGTTAT-3'

Cre recombinase (38 kDa)

loxP site

In vivo models for GSD I research

 Solution: conditional G6pc/Slc37a4 knockout mice (>2011) targeted gene deletion: (inducible) Cre-LoxP system Cre recombinase is expressed by a cell-type specific promoter deletion is induced after birth

These mouse models have provided insight into contribution of liver, kidney and intestine to GSD I symptoms and long-term complications inter-organ communcation / glucose production compensation

GSD Ib: hepatocytes (albumin-CRE)

Mutel et al., 2011 Resaz et al., 2014 Penhoat et al., 2014 Clar et al., 2014 Rajas et al., 2015 Raggi et al., 2018

In vivo models for GSD I research

- G6pc/Slc37a4 knockout mice: either 50 or 100% deletion of the gene/function
 Limitation: does not allow to investigate heterogeneity in symptoms and complications
 observed in GSD I patients
 GSD Ia patients: 0-23% residual G6PC activity
- Solution: CRISPR-cas9 mediated somatic gene editing *in vivo CRISPR-cas9 is used to generate a (conditional) knockout mouse model* targeted cell-type deletion: expression of cas9 is expressed by a cell-type specific promoter single guide RNAs targeting *G6pc* or *Slc37a4 are* administered by viral delivery mutation is induced after birth

CRISPR-cas9 mediated somatic gene editing allows to model heterogeneity in GSD Ia biochemical symptoms in mice

CRISPR-cas9 mediated somatic gene editing allows to model heterogeneity in GSD Ia biochemical symptoms in mice

CRISPR-cas9 mediated somatic gene editing allows to model heterogeneity in GSD Ia biochemical symptoms in mice

CRISPR-cas9 mediated *G6pc* editing in hepatocytes induces persistent fasting hypoglycemia and liver tumor formation

Rutten et al., 2021

GSD I in vivo models: benefits

- Exhibit physiologically meaningful G6PC expression/function (<-> ex vivo/in vitro models)
- Cas9-mediated somatic gene editing allows to model heterogeneity in biochemical symptoms in mice -> personalized medicine for GSD I patients
- Allow to systematically investigate the relationship between biochemical symptoms and longterm complications along the course of GSD I
- Allow to systematically investigate the mechanisms of biochemical symptoms and long-term complications along the course of GSD I
- Allow to evaluate efficacy and safety of potential new treatments for GSD I

GSD I in vivo models: (current) limitations

- Patient-specific mutations are not yet systematically compared
- Dietary management inedequately covered in animal models
- Organ interaction does not allow to dissect the contribution of specific organ tissues to GSD I biochemical symptoms, e.g. contribution of liver to endogenous glucose production

GSD I in vivo models: take home messages

- In vivo models are essential for GSD I preclinical research and for development of effective and safe new therapies for GSD I patients
- As *ex vivo/in vitro* (patient specific) models are evolving rapidly, these should be considered as an complementary or alternative approach to address specific reserach questions

