

Polimer Talk

Todd Burton- Hardware R&D

09/09/2020

3-lane OrganoPlate

Gravity driven flow

E Shear stress

- Where $w >> h \rightarrow \tau = \frac{6\mu Q}{h^2 w}$
- μ is dynamic viscosity
- *Q* is the flow rate

Basement membrane

- Basal Lamina
 - Lamina lucida
 - Lamina densa
- Reticular connective tissue

Design considerations for gel loading

- Mode of gelation
- Optimise energy involved in loading gel
 - Surface energy of materials
 - Capillary pressure
 - Surface area in contact with gel
 - Entry force of gel
 - Viscosity of gel

Surface energy of materials: contact angle

E Contact Angle

Film **Fibres**

No surface treatment

Surface treatment

E Capillary pressure

 Contact angle below 90°

 Contact angle above 90°

Capillary rise in parallel plate

L- Length of water in contact with plate ρ - Density γ - Surface tension g- Acceleration due to gravity \emptyset - Contact angle

Capillary rise in parallel plate

Entry force of gel

- Backpressure created by gel droplet
- Laplace law states: $\Delta P = \frac{2\gamma}{R}$
- Pressure is inversely proportional to radius
 → Smaller radius creates more pressure

Mimetas BV Leiden, 2020

E Rheology of non-Newtonian fluids

- Newtonian fluids have the same viscosity irrespective of the shear rate
- Non-Newtonian fluid viscosity changes as a function of shear rate

Mimetas BV Leiden, 2020

E Rheology of non-Newtonian fluids

- Collagen gel has a time dependant viscosity when neutralised and cross linking.
- Collagen has a shear thinning behaviour
- Increased viscosity increases the time taken to fill the channel.

Mimetas BV Leiden, 2020

Gel requirements

- Loading and unloading \rightarrow low viscosity required
 - Gel as support or removal of gel after curing
- Tall + Thin gel → Stiffer gel required
- Gelation mechanism
 - Photocurable
 - Neutralisation
 - Heat induced

E Summary

 Flow within microfluidics can related back to electrical circuits

 Fluid shear stress is a function of flow rate and geometry of the channel

 Surface properties and geometry play a key role in how the microfluidic fill.

The organ-on-a-chip company

TPB t.burton@mimetas.com www.mimetas.com

JH Oortweg 19 2333 CH Leiden The Netherlands