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Combined metabolic activators therapy ameliorates
liver fat in nonalcoholic fatty liver disease patients
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Abstract

Nonalcoholic fatty liver disease (NAFLD) refers to excess fat accu-
mulation in the liver. In animal experiments and human kinetic
study, we found that administration of combined metabolic activa-
tors (CMAs) promotes the oxidation of fat, attenuates the resulting
oxidative stress, activates mitochondria, and eventually removes
excess fat from the liver. Here, we tested the safety and efficacy of
CMA in NAFLD patients in a placebo-controlled 10-week study. We
found that CMA significantly decreased hepatic steatosis and levels
of aspartate aminotransferase, alanine aminotransferase, uric acid,
and creatinine, whereas found no differences on these variables in
the placebo group after adjustment for weight loss. By integrating
clinical data with plasma metabolomics and inflammatory proteo-
mics as well as oral and gut metagenomic data, we revealed the
underlying molecular mechanisms associated with the reduced
hepatic fat and inflammation in NAFLD patients and identified the
key players involved in the host–microbiome interactions. In
conclusion, we showed that CMA can be used to develop a phar-
macological treatment strategy in NAFLD patients.
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Introduction

Nonalcoholic fatty liver disease (NAFLD), defined as the hepatic fat

accumulation of ≥ 5% unrelated to alcohol consumption and other

liver diseases, comprises pathologies that include hepatic steatosis,

steatohepatitis, and hepatic fibrosis and cirrhosis (Anstee et al,

2019). NAFLD is closely associated with insulin resistance and

metabolic syndrome. Due to the rapid rise in the prevalence of

obesity and diabetes; it is the leading cause of chronic liver disease

(Estes et al, 2018; Younossi et al, 2018). Globally, at least one in

four people have hepatic steatosis (Abeysekera et al, 2020; Bugia-

nesi, 2020).

Current management strategies, including lifestyle modification,

increased physical activity, and dietary intervention, have limited

adherence and minimal prolonged success (Romero-G�omez et al,

2017; Alferink et al, 2019; Sanyal, 2019). No drugs have been

approved to treat NAFLD, and effective treatment options with long-

term safety are urgently required. Although research is paving the

way for the development of therapeutics, the results of early clinical

trials of drugs targeting single pathways have been mostly unsuc-

cessful. Combining compounds that reduce lipid accumulation and

hepatocellular injury has been proposed as a more suitable thera-

peutic strategy for this complex disease (Ertunc & Hotamisligil,

2016; Barbier-Torres et al, 2017, 2020). Targeting multiple pathways

is more likely to translate into successful outcomes (Friedman et al,

2018; Mardinoglu, Boren, et al, 2018; Mardinoglu et al, 2019).

A key mechanism in the pathogenesis of NAFLD is inadequate

removal of hepatic fat by fatty acid oxidation. Our previous work

combining in-depth multi-omics profiling and hepatocyte-specific

integrated networks identified three landmark metabolic features of
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hepatic steatosis: limited serine availability, reduced de novo

glutathione (GSH) synthesis, and altered nicotinamide adenine dinu-

cleotide (NAD+) metabolism (Mardinoglu et al, 2014, 2017; Lee

et al, 2016).

We hypothesized that NAFLD could be treated with combined

metabolic activators (CMAs), including L-carnitine tartrate to facili-

tate mitochondrial fatty acid uptake from cytosol, the NAD+ precur-

sor nicotinamide riboside to induce hepatic mitochondrial b-
oxidation and facilitate fatty acid transfer through the mitochondrial

membrane, and the potent glutathione precursors L-serine and N-

acetyl-l-cysteine to reduce oxidative stress (Mardinoglu, Wu, et al,

2018). We further hypothesized that administration of these meta-

bolic activators would promote mitochondrial fatty acid uptake and

oxidation and reduce hepatic fat and inflammation. In animal toxi-

cology studies and a human calibration study for CMA, we found

that the metabolic activators were well tolerated and increased the

activators’ plasma levels and their associated metabolites. Addition-

ally, administration of CMA effectively increased fatty acid oxidation

and de novo glutathione generation, as judged by metabolomic and

proteomic profiling (Zhang et al, 2020). In this placebo-controlled

phase 2 study, we tested our hypotheses and the efficacy and safety

of CMA in NAFLD patients by integrating clinical data with plasma

metabolomics and inflammatory proteomics as well as oral and gut

metagenomics.

Results

Patient characteristics

Of 56 patients screened for the trial, 32 met the eligibility criteria

(see Materials and Methods and Supplementary Appendix) and were

randomly assigned to receive treatment or placebo. Twenty-four

patients were excluded according to the study protocol (Datasets

EV1–EV3), and one eligible patient moved to another city before the

randomization. Of the remaining 31 eligible patients (24 males and

7 females), 20 were randomly assigned to the CMA group and 11 to

the placebo group (Fig 1A). One patient was excluded from analysis

as a result of the COVID-19 lockdown. The 30 remaining patients

completed the study (Fig 1A). However, because of the COVID-19

lockdown, eight were unable to visit the Day 14 visit’s trial site but

completed the final visit on Day 70. These patients have been moni-

tored carefully by phone calls during the study. The patients’ mean

age was 40.4 years (25–63 years), and 77.4% were men (Table 1).

Baseline demographic and clinical characteristics did not differ

between groups (Table 1, Dataset EV4).

CMA decreases hepatic steatosis and improves
clinical parameters

Adherence to the treatment regimen was more than 95% and did

not differ between groups. The primary outcome variable, hepatic

fat content as judged from the proton density fat fraction estimated

by magnetic resonance imaging (MRI-PDFF), was lower on Day 70

than on Day 0 in the CMA group (10%, P = 0.028) but not in the

placebo group (Fig 1B, Datasets EV3 and EV4). After adjustment for

weight loss, this difference remained significant in the CMA group

(P.adj = 0.033) (Fig 1, Table 1).

The serum level of alanine aminotransferase (ALT) was lower on

Day 70 in both the CMA group (39%, P = 0.0003 versus Day 0) and

the placebo group (22%, P = 0.025); however, after weight loss

adjustment, the difference remained significant only in the CMA

group (P.adj = 5.75e-07, Table 1). On Day 14, the ALT level after

weight loss adjustment was significantly lower only in the CMA

group (24%, P.adj = 0.0015) (Fig 1C, Table 1, Dataset EV4). Simi-

larly, the serum level of aspartate aminotransferase (AST) on Day

70 versus Day 0 was lower in both the CMA group (30%, P = 0.004)

and the placebo group (20%, P = 0.009); however, after weight loss

adjustment, the AST level was significantly lower only in the CMA

group (P.adj = 1.58e-05) (Fig 1D, Table 1, Dataset EV4).

The serum uric acid level was lower in the CMA group on both

Day 14 (12%, P.adj = 0.003) and Day 70 (15%, P.adj = 1.12e-05),

both before and after weight loss adjustment (Fig 1E, Table 1,

Dataset EV4). The creatinine level on Day 70 was significantly

decreased only in the CMA group (8%, P.adj = 0.0007), both before

and after weight loss adjustment (Fig 1F, Table 1, Dataset EV4).

The serum levels of uric acid and creatinine did not change in the

placebo group at either time point (Table 1, Dataset EV4). Systolic

blood pressure on Day 70 was 5% lower in the CMA group

(P = 0.023), whereas in the placebo group, it was unchanged and

diastolic blood pressure had increased (P = 0.038) (Dataset EV4).

CMA alters plasma metabolites

To characterize the patients and reveal the underlying molecular

mechanisms associated with the decrease in liver fat and improve-

ment in clinical parameters in the CMA group, we generated untar-

geted metabolomics data from plasma samples and measured the

levels of 1,032 metabolites (Dataset EV5). After excluding metabo-

lites with missing values in >50% of samples, 929 metabolites were

analyzed (Dataset EV5). Metabolites, whose levels on Day 70 and

Day 14 versus Day 0 differed significantly both before and after

weight loss adjustment, are listed in Dataset EV6; those that differed

between groups are listed in Dataset EV7.

Plasma levels of serine, nicotinamide, and carnitine, which are

directly associated with CMA, and of metabolites indirectly associ-

ated with CMA were significantly higher on Day 70 than on Day 0 in

the CMA group (Fig 2A, Dataset EV6), and those levels were signifi-

cantly higher than in the placebo group (Dataset EV7). Specifically,

the plasma levels of N1-methyl-4-pyridone-3-carboxamide, N1-

methyl-2-pyridone-5-carboxamide, and 1-methylnicotinamide (asso-

ciated with NR and NAD+ metabolism); of N-acetylglycine, N-

palmitoylserine, N-oleoylserine, and N-stearoylserine (associated

with serine and glycine metabolism); and of deoxycarnitine, acetyl-

carnitine, and butyrylcarnitine (associated with carnitine metabo-

lism) were significantly higher on Day 70 than on Day 0 in the CMA

group (Dataset EV6). On the other hand, we found that the plasma

level of cysteine associated with NAC showed tendency (P = 0.052)

to be downregulated on Day 70 versus Day 0 in the CMA group

(Fig 2A, Dataset EV6). Hence, we observed that NAC has different

plasma kinetics compared with the other three metabolic activators.

We studied the association of the plasma level of individual meta-

bolic activators with the plasma level of the metabolites (Fig 2B,

Dataset EV8). We provided a mechanistic explanation for the alter-

ations in the plasma-level metabolites other than administered

metabolic activators.
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Figure 1. CMA improves liver fat and clinical parameters.

A Study design for testing the effects of CMA in NAFLD patients.
B–F (B) Differences in clinical variables including (B) liver fat, plasma levels of (C) ALT, (D) AST, (E) uric acid, and (F) creatinine are presented in the CMA and placebo

groups on Days 0, 14, and 70 after weight loss adjustment. Adj. P indicates P value after weight loss adjustment. Statistical significance is defined based on paired
Student’s t-test. P < 0.05. The boxes show the distribution of the clinical parameters in different groups. The bottom and top of the boxes represent the 25th and
75th percentiles. The central band represents the median value. The whiskers represent the minimum and maximum values that are not outliers, and dots represent
outlier values. The sample sizes on Day 0, 14, or 70 were marked in each boxplot.
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We found that 110 metabolites differed significantly on Day 70

versus Day 0 (P < 0.05) in the CMA group; 44 metabolites were

involved in lipid metabolism (Fig EV1), and 66 metabolites were

involved in amino acids and other parts of the metabolism (Fig 3A,

Dataset EV6). Of the 66 metabolites that were significantly different

on Day 70 versus Day 0 in the CMA group, 4 of them were signifi-

cantly different in both groups (Fig 3B), 62 of them were signifi-

cantly different in only CMA group (Fig 3C), and 27 of them were

significantly different only in the placebo group (Fig 3D). Previ-

ously, we found that the increased plasma levels of kynurenine and

kynurenate were associated with high hepatic fat (Mardinoglu, Wu,

et al, 2018). In a one-day clinical study of the acute effect of CMA

on plasma metabolite levels, we found that kynurenine and kynure-

nate levels were significantly decreased (Zhang et al, 2020). In the

current study, plasma levels of kynurenate (Fig 3B) and kynurenine

(Fig 3C) were significantly lower on Day 70 versus Day 0 in the

CMA group both before and after weight loss adjustment (Dataset

EV6). On the other hand, the kynurenate plasma level was signifi-

cantly increased on Day 70 versus Day 0 in the placebo group

(Fig 3B). Moreover, we found that the plasma level of 3-amino-2-

piperidone associated with the urea cycle; arginine and proline

metabolism were significantly decreased on Day 70 versus Day 0 in

the CMA group, whereas its plasma level was significantly increased

in the placebo group (Fig 3B).

Our analysis also revealed decreased metabolism of purine and

xanthine in the CMA group on Day 70. Plasma levels of urate,

xanthine, hypoxanthine 5-acetylamino-6-amino-3-methyluracil, 1,7-

dimethylurate, and theophylline were significantly reduced in the

CMA group on Day 70 (Fig 3C, Dataset EV6). Consistent with these

findings, plasma uric acid levels were significant decreased in this

group. N-trimethyl-5-aminovalerate (TMAVA) was the most signifi-

cantly reduced metabolite in the CMA group on Day 70, both before

and after weight loss adjustment (Fig 3C, Dataset EV6) and was

significantly lower than in the placebo group (Dataset EV7). TMAVA

is linked to intestinal microbes and associated with lysine metabo-

lism and is one of the best predictors of microalbuminuria (Haukka

et al, 2018). In a previous study, the plasma level of TMAVA was

significantly increased in NAFLD patients (Zhao et al, 2020).

Enterococcus faecalis and Pseudomonas aeruginosa are responsible

for metabolizing trimethyllysine to TMAVA, which was further

modulated by antibiotic treatment in a mouse model (Zhao et al,

2020). We also found that the plasma level of N,N,N-trimethyl-

alanylproline betaine (TMAP) was significantly downregulated in

the CMA group on Day 70, even after weight loss adjustment

(Fig 3C, Dataset EV6), as were creatinine levels (Fig 1F, Table 1,

Dataset EV4). TMAP has been described as a novel potential

biomarker of the dialytic clearance that can accurately define kidney

function (Velenosi et al, 2019).

CMA treatment correlated significantly with the plasma levels of

serine, glycine, gamma-glutamylglycine, carnitine, TMAVA, 1-

methylnicotinamide, N1-methyl-4-pyridone-3-carboxamide, and N1-

methyl-2-pyridone-5-carboxamide (Fig 2B, Dataset EV8). But none

of these metabolites correlated significantly with the plasma

cysteine level, indicating that cysteine utilization differs from that of

other metabolites in the CMA.

CMA reduces inflammation

Plasma levels of 96 inflammatory protein markers were measured

with the plasma proteome profiling platform Proximity Extension

Assay (PEA) using an inflammation panel quantifying the plasma

level of target proteins. After quality control and exclusion of

proteins with missing values in more than 50% of samples, 72

proteins were analyzed (Dataset EV9). Proteins whose levels dif-

fered significantly between the visits in the CMA and placebo groups

are listed in Dataset EV10. The plasma levels of CD8A, CSF-1,

CCL23, FGF-21, and oncostatin-M (OSM) were significantly

decreased only in the CMA group (Fig 4A, Dataset EV10); however,

no significant changes in plasma levels of inflammation-related

proteins were found in the placebo group (Dataset EV10).

The plasma level of FGF-21 is increased in NAFLD patients and

is a potential diagnostic marker of NAFLD (Rusli et al, 2016). The

plasma level of FGF-21 correlates positively with high hepatic fat

levels in both mice and humans (Dushay et al, 2010). The plasma

levels of CCL23 and CD8A have also been associated with hepatic

steatosis (Marra & Lotersztajn, 2013). We recently found that the

Table 1. Baseline demographics of the study population and summary of significantly different clinical parameters in the CMA and placebo groups
after weight loss adjustment.

CMA group (n = 20) Placebo group (n = 11)

Age, year (range) 40.9 (25–62) 39.5 (27–63)

Male, n 16 (80.0%) 8 (72.7%)

Female, n 4 (20.0%) 3 (27.3%)

Day 14 vs Day 0 Day 70 vs Day 0 Day 14 vs Day 0 Day 70 vs Day 0

FC P.adj valuea FC P.adj valuea FC P.adj valuea FC P.adj valuea

Hepatic fat (%) 0.895 0.096 0.887 0.033 0.963 0.968 0.969 0.825

ALT (IU/l) 0.723 0.0015 0.630 5.75e�07 0.827 0.458 0.767 0.062

AST (IU/l) 0.848 0.061 0.735 1.58e�05 0.915 0.796 0.822 0.059

Uric acid (mg/dl) 0.886 0.003 0.853 1.12e�05 0.906 0.556 0.912 0.531

Creatinine (mg/dl) 0.965 0.209 0.925 0.0007 1.009 0.968 0.996 0.961

ALT: alanine transaminase; AST: aspartate aminotransferase; FC: fold change. P < 0.05.
aAdjusted P-value after adjustment for weight loss.
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plasma levels of CSF-1, OSM, and FGF-21 are significantly associ-

ated with hepatic steatosis (Lovric et al, 2018). The findings in this

study are in agreement with our previous studies. The plasma levels

of FGF-21 and CCL23 rapidly decreased in our 1-day CMA study

after eliminating the effect of the fasting (Zhang et al, 2020), and the

plasma level of FGF-21, CCL23, and CSF-1 had significantly reduced

in 1-week carbohydrate-restricted diet study (Mardinoglu, Wu, et al,

2018).

We assessed the associations between the plasma level of the

significant proteins and the individual metabolic activators and

found that CSF-1 and OSM levels are negatively correlated with

carnitine and serine levels (Fig 4B, Dataset EV11). Additionally,

nicotinamide is also negatively correlated with CSF-1 levels (Fig 4B,

Dataset EV11).

We finally identified links between proteins whose plasma levels

changed significantly and plasma metabolites (Fig 4C, Dataset

EV12). FGF-21 correlated with the glycine conjugate of C10H14O2,

2-hydroxyoctanoate, and N2,N2-dimethylguanosine and correlated

negatively with bilirubin degradation products, 2-piperidinone, and

carboxyethyl-GABA.

CMA alters gut and oral microbiome

The alterations in the gut microbiome have been associated with the

NAFLD (Aron-Wisnewsky et al, 2020). In our study, we collected

feces and saliva samples to study the effect of the CMA on the gut

and oral microbiome and revealed the interactions between the host

and microbe interactions during the CMA treatment.

We first compared the differences in the species’ abundances

between Day 70 versus Day 0 in the CMA and placebo groups in

the gut microbiome. We found that abundances of Proteobacteria

(Neisseria flavescens), Actinobacteria (Rothia mucilaginosa, Adler-

creutzia equolifaciens, Asaccharobacter celatus, Collinsella aerofa-

ciens, Bifidobacterium adolescentis, and Actinomyces sp ICM47),

and Firmicutes (Streptococcus mitis, Streptococcus sanguinis, Strep-

tococcus parasanguinis, Roseburia faecis, Roseburia hominis, and

Eubacterium hallii) were significantly decreased. However, in the

placebo group species belong to Firmicutes (Firmicutes bacterium

CAG 83 and Oscillibacter sp 57 20) and Bacteroides vulgatus were

significantly reduced (Fig 5A, Datasets EV16 and EV17). Numerous

studies indicated that Actinobacteria and Proteobacteria abundance

was increased in NAFLD compared with healthy controls, at the

level of phylum (Guohong et al, 2019). Furthermore, increased

Firmicutes-to-Bacteroidetes ratio has been stated as a feature of

obesity-related NAFLD, but subsequent studies have shown incon-

sistent results, which still needs further research (Porras et al,

2018).

Next, we compared the abundances of the species between CMA

versus placebo groups on Day 70 in the gut microbiome. We found

that the abundance of the butyrate-producing species (Lawsonibac-

ter asaccharolyticus, Eubacterium remulus, and Eubacterium

siraeum) was significantly increased in the CMA group (Fig 5B,

Datasets EV16 and EV17). Butyrate is a preferred energy source for

gut epithelial cells, and it plays a vital role in maintaining health in

humans. Notably, the abundance of acetaldehyde producer Rothia

mucilaginosa was significantly downregulated in the gut micro-

biome of CMA group on Day 70 versus Day 0 (Fig 5A) and lower

than the placebo group on Day 70 (Fig 5B, Datasets EV16 and

EV17).

Similarly, we compared the differences in the species’ abun-

dances between Day 70 versus Day 0 in the CMA and placebo

groups in the oral microbiome. We found that the abundance of the

specific species of Proteobacteria (Cardiobacterium hominis),

Bacteroidetes (Prevotella maculosa), and Actinobacteria (Corynebac-

terium matruchotii and Actinobaculum sp oral taxon 183) was

significantly decreased in the CMA group (Figs 5C and EV2, Dataset

EV18). We also found increased abundance of Actinomyces sp oral

taxon 181 and reduced abundance of Neisseria sicca between CMA

versus placebo groups on Day 70 in the oral microbiome (Fig 5D,

Dataset EV18).

We evaluated the association of the plasma levels of metabolites

directly related to CMA with the abundance of species in the gut

microbiome (Fig 5E) and oral microbiome (Fig EV2) and found that

Faecalibacterium prausnitzii is positively correlated with CMA

related metabolites, namely cysteine, cysteinyl glycine, sarcosine,

and N1-methylinosine (Fig 5E, Dataset EV17). We also found that

plasma cysteine levels are significantly positively correlated with

the abundance of species associated with Firmicutes (Roseburia

faecis and Oscillibacter sp 57 20) and Bacteroidetes (Bacteroides

ovatus and Bacteroides fragilis). Additionally, we observed that the

plasma levels of N1-methyl-4-pyridone-3-carboxamide and N1-

methyl-2-pyridone-5-carboxamide are significantly positively corre-

lated with the abundance of Alistipes shahii and negatively corre-

lated with the abundance of Bacteroides cellulosilyticus and

Fusicatenibacter saccharivorans (Fig 5E, Dataset EV17).

Changes in the gut microbiome are linked to inflammation by

triggering molecules involving interleukins and other cytokines

(Schirmer et al, 2016). An increased abundance of Coprococcus

eutactus and decreased abundance of Bacteroides faecis, Bacteroides

dorei, Bacteroides xylanisolnes, and Barnessiella intestihominis in

the gut microbiome were associated with FGF-21 levels (Fig 4D,

Dataset EV17). In the oral microbiome, we found that the abun-

dances of Prevotella jejuni and Alloprevotella tannerae were signifi-

cantly negatively correlated with the plasma level of FGF-21

◀ Figure 2. Supplementation improves the plasma level of metabolic activators.

A Differences in the plasma levels of individual CMA including serine, carnitine, cysteine, and nicotinamide are shown in the CMA and placebo groups on Days 0, 14,
and 70. Adj.P indicates P value after weight loss adjustment. Statistical significance is defined based on paired Student’s t-test. P < 0.05. The boxes show the
distribution of the abundance of the four metabolites in different groups. The y-axis is log10 transformation. The bottom and top of the boxes represent the 25th and
75th percentiles. The central band represents the median value. The whiskers represent the minimum and maximum values that are not outliers, and dots represent
outlier values. The sample sizes on Day 0, 14, or 70 were marked in each boxplot.

B Associations between the plasma level of individual CMA and the 10 most significantly correlated plasma metabolites are presented. Asterisks indicate statistical
significance (FDR < 0.05) based on Spearman correlation analysis. Only metabolites detected in more than 50% of samples are included in the analysis. Cor.Coeff:
correlation coefficient.
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(Fig 4E, Dataset EV18). Moreover, we found that increased abun-

dance of Prevotella copri and Neisseria sicca and decreased abun-

dance of Neisseria elongate and Haemophilus parainfluenzae in the

oral microbiome associated with the plasma level of CCL23, of

which gene expression level was significantly upregulated in NASH

patients(Hart et al, 2017) (Fig 4E, Dataset EV18). Interestingly,

increased abundances of Faecalibacterium prausnitzii and

Bacteroides fragilis in the gut microbiome were positively correlated

with the plasma level of CD8A, indicating the key role of the micro-

biome in the modulation of CD8 T-cell responses (Fig 4D, Dataset

EV17).

Even though the oral and gut microbiome are distinct, a body of

evidence claimed a strong relationship between these microenviron-

ments due to the transfer of oral members to gut by a constant flow

A C

B

D

Figure 3. CMA alters plasma metabolite levels.

Plasma level of metabolites (other than lipids) that are significantly different between Day 70 versus Day 0 in the CMA and placebo groups after weight loss adjustment
is presented.
A Venn diagram represents the number of significantly different metabolites (other than lipids) on Day 70 versus Day 0 in the CMA and placebo groups. Statistical

significance is defined based on paired Student’s t-test. P < 0.05. 66 and 31 metabolites (other than lipids) were significantly different on Day 70 versus Day 0 in
CMA and placebo groups, respectively. The two lists of metabolites had four overlaps.

B–D Association between the plasma level of significantly different metabolites on Day 70 versus Day 0 (B) in both (n = 4); (C) only in CMA (n = 62) and (D) only in
placebo (n = 27) groups are shown. Heatmap shows log2FC values of metabolites between Day 70 versus Day 0. Asterisks indicate statistical significance based on
paired Student’s t-test. P < 0.05. Log2FC: log2(fold change).
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of saliva and ingestion (Schmidt et al, 2019). Therefore, we evalu-

ated the species’ correlation in feces and saliva microbiome and

revealed a significant positive correlation between species pairs,

where only two pairs were negatively correlated (Fig EV3). Interest-

ingly, we found that the abundance of the species belongs to the

Prevotella genus in the oral microbiome and the species belong to

Bacteroides genus in the gut microbiome are affected apparently

from each other’s abundance (Fig EV3).

The associations between clinical variables and multi-omics data

To study the link between improved clinical parameters and meta-

bolism, we determined the significant correlations between

improved clinical variables (e.g., hepatic fat, ALT, AST, and uric

acid) and various metabolites (Fig 6A, Dataset EV13). The

plasma level of cysteine-glutathione disulfide, iminodiacetate, 4-

hydroxychlorothalonil, and arachidonoylcholine significantly and

negatively correlated with hepatic fat (Fig 6A, Dataset EV13). Of

these metabolites, cysteine-glutathione disulfide significantly and

negatively correlated with ALT, AST, and uric acid levels, indicating

that glutathione metabolism has a key role in improving liver func-

tions in NAFLD patients.

We assessed the associations between improved clinical parame-

ters and inflammation by identifying the significant correlations

between improved clinical variables (e.g., hepatic fat, ALT, AST,

and uric acid) and various inflammation-related proteins (Fig 6B,

Dataset EV14). We observed a positive correlation between the liver

fat and the plasma level of CDCP1, CCL23, TNFSF14, and FGF-21;

the AST level and the plasma level of CSF-1 and CDCP1; the ALT

level and the plasma levels CDCP1, CSF-1 and FGF-21; the uric acid

level and plasma level of TNFSF14; and the creatinine level and

plasma levels of OSM and EN-RAGE. Additionally, we found a nega-

tive correlation between the levels of ALT and AST and plasma level

of CCL28, which is significantly positively correlated with the

plasma level of serine.

Correlation analysis between the improved clinical variables

and the abundances of key discriminatory microbial species

showed that the abundances of Prevotella copri in gut microbiome

were positively correlated with liver fat, AST, ALT, and systolic

blood pressure level (Fig 6C, Dataset EV17). Additionally, the

abundance of Prevotella sp CAG 279, Eubacterium sp CAG 38,

Bacteroides uniformis, and Bacteroides eggerthii are other positively

correlated species with the liver fat. In contrast, the abundance of

Fusicatenibacter saccharivorans and Prevotella sp CAG 279 is nega-

tively correlated with liver fat (Fig 6C, Dataset EV17). We also

found that the abundance of Ruminococcus bicirculans was signifi-

cantly correlated with ALT and AST levels; however, the abun-

dance of Alistipes shahii showed a negative correlation with both

ALT and AST levels (Fig 6C, Dataset EV17). Of note, we found

significant negative correlation Eubacterium rectale with ALT levels

and Faecalibacterium prausnitzii with AST levels; both are well-

known species associated with healthy gut microbiome (Fig 6C,

Datasets EV16 and EV17).

Several studies reported that the oral microbiota reflects changes

in gut microbiota’s dysbiosis, and it might be indicator for liver

pathologies (Bajaj et al, 2015). In our study, the evaluation of oral

microbiome showed that the abundances of Veilonella infantum

and Provetolla jejuni are positively and the abundances of Capnocy-

tophaga leadbetteri are negatively correlated with liver fat; AST

levels were positively correlated with the abundances of Aggretibac-

ter segnis and Haemophilus sp HMCS7 1H05; ALT levels were nega-

tively correlated with the abundances of Prevotella oral taxon 306

(Fig 6D, Dataset EV18).

It has been shown that gut microbiota plays significant roles in

uric acid metabolism. Here, we found that the abundances of

Bacteroides coprocola and Proteobacteria bacterium CAG 139 in the

gut microbiome and Neisseria subflava in the oral microbiome

were significantly positively correlated with the uric acid levels.

In contrast, the abundances of Bacteroides ovatus, Butyrivibrio

crossotus, and Parasutterella excremntihominis in the gut micro-

biome and the abundances of Gemella haemolysans in the oral

microbiome were significantly negatively correlated (Fig 6C and

D, Datasets EV16–EV18). We also found that the abundances of

the Fusobacterium periodonticum and Porphyromonas somerae,

opportunistic pathogens in the oral microbiome, were significantly

positively correlated to the urea levels (Fig EV2A). Interestingly,

creatinine levels correlated with increased abundances of Prevo-

tella copri and Neisseria flavescens and decreased abundances of

Prevotella nigrescens and Veilonella parvula in the oral micro-

biome (Fig 6D, Dataset EV18). The abundances of Bacteroides

fragilis and Faecalibacterium prausnitzii in the gut microbiome are

negatively correlated with creatinine levels (Fig 6C, Dataset

EV17).

Integrative multi-omics analysis

We generated an integrative multi-omics network based on clinical

variables, proteomic, metabolomic, and metagenomic data to show

the functional relationship between analytes within and between

omics data. The filtered network (edges FDR < 0.05) can be viewed

at iNetModels (http://inetmodels.com), an open-access interactive

web platform for multi-omics data visualization and database (Arif

et al, 2021). We overlapped the statistically altered metabolites,

proteins, and clinical variables to the sub-network of the metabolic

activators and liver fat, as primary clinical variable targeted by CMA

(Fig 7A). Furthermore, we performed a centrality analysis of the

◀ Figure 4. CMA decreases plasma levels of inflammatory proteins.

A Heatmap shows log2FC-based alterations between the significantly different inflammation-related proteins on Day 70 versus Day 0 in the CMA and placebo
groups. Asterisks indicate statistical significance based on paired Student’s t-test. P < 0.05.

B–E (B) Heatmap shows the correlation between the plasma levels of all inflammation-related proteins and plasma levels of the individual metabolic activators
including serine, cysteine, carnitine, and nicotinamide. Asterisks indicate statistical significance based on Spearman correlation analysis. P < 0.05; Heatmap shows
the associations between the significantly different inflammation-related proteins (CD8A, CSF-1, CCL23, FGF-21, and OSM) (C) with the 10 most significantly
correlated plasma metabolites, (D) with the abundance of the species in the gut microbiome and (E) with the abundance of the species in the oral microbiome.
Asterisks indicate statistical significance based on Spearman correlation analysis. P < 0.05; Cor. Coeff: correlation coefficient; Log2FC: log2(fold change).
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E

B C D

Figure 5. CMA alters gut and oral microbiome.

A–D Scatter plot with linear regression line and heatmap show log2FC-based alterations of the significantly different species in the (A) gut microbiome between CMA
and placebo groups on Day 70 versus Day 0; (B) gut microbiome between Day 70 versus Day 0 in the CMA and placebo groups; (C) oral microbiome between CMA
and placebo groups on Day 70 versus Day 0; (D) oral microbiome between Day 70 versus Day 0 in the CMA and placebo groups. Each dot represents a species, and
it has been colored according to its corresponding phylum. Asterisks indicate statistical significance based on paired Wilcoxon signed-rank test. P < 0.05. Log2FC:
log2(fold change).

E Heatmaps show the correlations between the plasma levels of metabolites (other than lipids) and the abundance of the species in the gut microbiome. Asterisks
indicate statistical significance based on Spearman correlation analysis. P < 0.05; Cor. Coeff: correlation coefficient.

10 of 18 Molecular Systems Biology 17: e10459 | 2021 ª 2021 The Authors

Molecular Systems Biology Mujdat Zeybel et al



A

B
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Figure 6. Associations between the clinical data and omics data.

A–D Heatmap shows the association between the plasma level of clinical variables including liver fat, ALT, AST, uric acid, and creatinine with (A) plasma level of 10 most
significant metabolites, (B) plasma level of 10 most significant inflammation-related proteins, (C) the abundance of the species in gut microbiome, and (D) the
abundance of the species in oral microbiome. AST, aspartate aminotransferase; ALT, alanine transaminase. Asterisks indicate statistical significance based on
Spearman correlation analysis. P < 0.05; Cor. Coeff: correlation coefficient.
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filtered network to identify the most central analytes. We identified

carnitine as the most prominent metabolic activator. We also

observed that top 20-degree metabolites were dominated by lipid

structures (sphingomyelin, phosphatidylinositol/choline, diacylglyc-

erol, and fatty acids), gamma-glutamylisoleucine, and retinol (Vita-

min A). For the clinical variables, the level of uric acid, that was

shown to be downregulated in the CMA group, was identified as

one of the top 5 most connected clinical nodes.

Moreover, we observed that the abundance of the Roseburia

faecis (significantly downregulated in the CMA group) is signifi-

cantly negatively correlated with the plasma level of serine and

carnitine (Fig 7B). Based on these results, the multi-omics integra-

tive network analysis complemented and strengthened the single-

omics analysis findings. We also observed that serine and carnitine

play key roles among the metabolic activators in improving the clin-

ical outcome.

A

B

Figure 7. Integrating omics data based on network analysis.

A Neighbors of the CMA, including serine, carnitine, nicotinamide, and cysteine, and two important clinical variables (liver fat and uric acid) are presented based on the
multi-omics network analysis. Only analytes that are significantly altered in CMA Day 70 versus Day 0 are highlighted.

B First degree of microbial neighbors of the CMA and two important clinical variables (liver fat and uric acid) are presented based the multi-omics network analysis.
Full networks can be found in iNetModels (http://inetmodels.com).
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Safety

Both the CMA and placebo treatments were generally well tolerated.

Eighteen patients (12 in the CMA group and 6 in the placebo group)

reported only mild-to-moderate adverse events, including nonspeci-

fic gastrointestinal (33%) and musculoskeletal (20%) symptoms,

and all patients decided to complete the study (Dataset EV15).

Gastrointestinal symptoms in three patients in the placebo group

and one in the CMA group were associated with the intervention,

and their drug doses were reduced to one per day.

Discussion

Based on data-driven modeling and systems biology analysis, we

found that administration of CMA may increase the liver’s fat oxida-

tion, enhance the mitochondrial function in the cells, and reduce

oxidative stress. To test this hypothesis in a clinical setting, we

performed a randomized, placebo-controlled phase 2 study to inves-

tigate the efficacy and safety of CMA in NAFLD patients. We

observed improvements on clinical variables, plasma metabolomics,

inflammatory proteomics, and oral/gut microbiome after CMA treat-

ment in NAFLD patients (Fig 8). We found that CMA (10%) amelio-

rates the hepatic fat content assessed by MRI-PDFF and reduces

serum ALT (39%) and AST (30%) levels after 70 days. We also

observed that CMA reduces plasma levels of CD8A, CSF-1, CCL23,

and OSM, as shown by plasma proteomic analysis, indicating that

CMA attenuates hepatic inflammation. The positive results were not

linked to significant weight loss in the CMA group.

Analysis of untargeted metabolomics data confirmed the

expected biological outcomes of CMA treatment. Levels of plasma

N1-methyl-2-pyridone-5-carboxamide and 1-methylnicotinamide

were increased, suggesting that nicotinamide riboside provides suffi-

cient substrate and NAD+ for mitochondrial activation. These

metabolites have shown to be increased in a recent study, support-

ing the insulin-sensitizing ability of the nicotinamide mononu-

cleotide, another NAD+ intermediate, in skeletal muscle of

prediabetic women (Yoshino et al, 2021). Plasma levels of N-

acetylglycine, N-palmitoylserine, N-oleoylserine, and N-

stearoylserine were also increased, suggesting that CMA treatment

Figure 8. Improvements after CMA treatment.

A summary of the changes in clinical variables, plasma metabolomic, inflammatory proteomic, and oral/gut microbiome after CMA treatment in NAFLD patients. ALT:
alanine transaminase; AST: aspartate aminotransferase; TMAVA: N-trimethyl-5-aminovalerate.
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improves the serine deficiency associated with hepatic steatosis.

More importantly, fatty acid oxidation and carnitine metabolism

were remarkably facilitated, as judged from the robust plasma levels

of deoxycarnitine, acetylcarnitine, and butyrylcarnitine. Moreover,

after weight loss adjustment, the levels of tryptophan metabolites,

including kynurenate, kynurenine, and tryptophan betaine,

decreased significantly after CMA treatment.

Unexpectedly, CMA rapidly reduced the plasma level of uric acid

and associated metabolites (Fig EV4). Uric acid stimulates hepatic

steatosis either directly or by activating NLRP3 inflammasomes

(Lanaspa et al, 2012; Wan et al, 2016). Although the extent to which

uric acid reduction contributed to the regression in hepatic steatosis

is unclear, it likely had an additive effect. How might CMA reduce

serum uric acid levels in overweight and obese subjects? A recent

study revealed a strong association with uric acid and 1-

methylhistidine levels, which is significantly decreased with CMA

therapy (Pietzner et al, 2021). Another possible explanation is that

the glycine derived from serine lowers uric acid levels by stimulat-

ing uricosuria (Oshima et al, 2019). Given the significantly reduced

level of purine metabolism, it is also possible that L-carnitine inhib-

ited xanthine oxidase activity and uric acid production (Volek et al,

2002). Further clinical studies that include hyperuricemic patients

will be required to determine whether this effect can be generalized

to treat patients with hyperuricemia.

The cellular levels of NAD+ and GSH are fundamental factors

related to the metabolic conditions and the risk for mortality

(Miller et al, 2020; Silvagno et al, 2020). Depleted GSH can be

restored by administration of NAC, serine, and glycine which can

be synthesized through the interconversion of serine (Sim et al,

2014). Two other components of CMA including carnitine and

NR, which stimulate the transfer of fatty acids from the cytosol to

mitochondria, are also depleted in liver diseases (Hagen et al,

1998; Bieganowski & Brenner, 2004; Trammell et al, 2016; Salic

et al, 2019; Savic et al, 2020). Overall improvement of clinical

homeostasis reduces oxidative injury and improves bioenergetics,

thereby is more likely to have successful outcomes (Cummings

et al, 2020). According to this, we recently demonstrated the effi-

cacy of CMA for different metabolic conditions in a short-term

(14 days) phase 2/3 COVID-19 clinical trials (Altay et al, 2021)

and two longer-term (12 weeks) phase 2 Alzheimer’s disease (AD)

(preprint: Yulug et al, 2021a) and Phase 2 Parkinson’s disease

(PD) (preprint: Yulug et al, 2021b) clinical trials. Notably, we

observed the administration of CMA decreased the levels of ALT

and creatinine in all short-term and longer-term clinical trials and

it decreased the level of uric acid in longer-term AD and PD phase

2 clinical trials.

The direct or indirect impact of the microbiome on NAFLD

remains poorly understood, but numerous human and animal stud-

ies have confirmed the contribution of intestinal microbiota as a

driver through the compositional alterations, changes in the levels

of microbiota-derived metabolites, and loss of gut barrier integrity

(Altay et al, 2019; Aron-Wisnewsky et al, 2020). Even though the

inconsistent results have been obtained for patient-derived micro-

biome composition analyses, overgrowth of the Proteobacteria and

Actinobacteria phyla and the increased Firmicutes/Bacteroidetes

ratio have been shown as common markers of dysbiosis(Aron-

Wisnewsky et al, 2020; Magne et al, 2020). In this study, we

comprehensively characterized the gut and oral microbiome in

NAFLD patients before and after administration of CMA. We

observed a significant decrease in the abundance of species belong-

ing to Proteobacteria, Actinobacteria, and Firmicutes in the CMA

group after 70-day therapy. Additionally, the main end products of

bacterial metabolism are short-chain fatty acids which especially

butyrate is shown to reduce intestinal inflammation (Segain et al,

2000). In our study, well-known butyrate-producing species are

increased in the CMA group. Our results collectively indicated that

CMA induced literature supported beneficial alterations such as

positive correlation with the abundances of Faecalibacterium praus-

nitzii (Munukka et al, 2017; Grabherr et al, 2019), Roseburia faecis

(Tamanai-Shacoori et al, 2017), or butyrate producers (Boesmans

et al, 2018; Baxter et al, 2019). In addition to identifying the key

species, defining the distinct signatures of the microbiome and liver-

related clinical parameters in the well-defined patient cohort is valu-

able in discovery of new biomarkers for NAFLD.

A few limitations of the study need to be considered. First, the

study was designed to include 45 participants; however, because

of COVID-19 restrictions, only 32 subjects were enrolled. More-

over, only 7 female subjects (3 from CMA and 4 from placebo

group) remained in the sample pool, which hinder the possibility

to perform sex-specific analysis. Second, patients who had type 2

diabetes or dyslipidemia or were taking anti-diabetic medications

were excluded, which resulted in a more homogenous clinical

trial group. Third, hepatic fat content and inflammation were

assessed by MRI-based methods and plasma inflammatory protein

markers rather than liver histology. Our findings warrant a clini-

cal trial in patients with biopsy-proven nonalcoholic steatohepati-

tis to delineate the effects CMA on hepatic injury and

inflammation.

The safety profile of CMA in these patients was consistent with

the results of our previous one-day calibration study and clinical

trials, including only a single component of the CMA (Zhang et al,

2020). Our present study showed that CMA was safe and well-

tolerated in NAFLD patients, and no major safety concerns were

identified. In conclusion, CMA significantly reduced hepatic fat

content and serum markers of hepatic injury in 10 weeks. These

findings suggest that targeting multiple pathways by CMA is a

potentially effective therapeutic strategy for NAFLD.

Materials and Methods

Trial design and oversight

Patients for this randomized, placebo-controlled, phase 2 study

were recruited at the Koç University Hospital, Istanbul, Turkey

(Dataset EV1). The trial was conducted following Good Clinical

Practice guidelines and the principles of the Declaration of

Helsinki. An independent external data monitoring committee

oversaw the safety of the participants and the risk–benefit analy-

sis. Written informed consent was obtained from all participants

before trial-related procedures were initiated. The study was

approved by the ethics committee at Koç University (Decision No:

2018.351.IRB1.043). The study was registered at https://eudract.

ema.europa.eu/ with the accession number EudraCT_2018-000894-

59 and at https://clinicaltrials.gov/ with the accession number

NCT04330326.
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Participants

Overweight or obese patients 18–70 years of age were enrolled in

the trial if they were diagnosed with NAFLD and met all the inclu-

sion criteria: body mass index > 27 kg/m2, triglycerides ≤ 354 mg/

dl, low-density lipoprotein cholesterol ≤ 175 mg/dl, and increased

hepatic fat (> 5.5%). Patients were excluded if they carried the

PNPLA3 I148 M (homozygous for I148 M), had ALT or AST levels

> 3-fold higher than the upper limit of normal, or had taken oral

antidiabetics, including metformin, within 3 months. The inclusion

and exclusion criteria are detailed in the Supplementary Appendix.

The main characteristics of the study participants are presented in

Table 1 and Dataset EV2.

Randomization, interventions, and follow-up

Patients were randomly assigned to CMA or placebo (2:1). Patient

information (patient number, date of birth, initials) was entered into

the web-based randomization system, and the randomization codes

were entered into the electronic case report form.

CMA treatment was given for 70 days after the initial diagnosis

of high hepatic fat by MRI-PDFF. Patients in the treatment group

took one dose of CMA (3.73 g L-carnitine tartrate, 1 g nicotinamide

riboside, 12.35 g serine, and 2.55 g N-acetyl-l-cysteine) daily for the

first 14 days (after dinner) and two doses daily for the next 56 days

(after breakfast and dinner). Further information is provided in the

Supplementary Appendix.

The subjects returned to the study center for complete follow-up

evaluations, including body composition analysis and adverse

events recording. Hepatic fat was determined by MRI-PDFF on Days

0, 14, and 70. Plasma samples for proteomic and metabolomic anal-

yses were obtained on Days 0, 14, and 70. After Day 70, subjects

stopped taking their drugs (Dataset EV1).

Study outcomes

The study’s primary objective was to assess the difference in hepatic

fat content, quantified by MRI-PDFF, between subjects treated for

70 days with CMA or placebo (Dataset EV3). The secondary objec-

tives were to assess the tolerability and safety profile of CMA, as

judged by laboratory analyses and physical parameters (Dataset

EV4), and to examine additional efficacy parameters, as evaluated

by biochemical, metabolomic, and proteomic analysis.

The number and characteristics of adverse events, serious

adverse events, and treatment discontinuation due to study drugs

were reported from the beginning of the study to the end of the

follow-up period as key safety endpoints (Supplementary

Appendix). Changes in vital signs (systolic and diastolic blood pres-

sures, pulse, respiratory rate, body temperature, pulse oximetry

values), baseline values, and treatment status were recorded by

phone contacts between the visits. A complete list of endpoints is

provided in the Supplementary Appendix.

Untargeted metabolomic analysis

Plasma samples were collected on Days 0, 14, and 70 (Datasets

EV5–EV8) for nontargeted metabolite profiling by Metabolon

(Durham, NC). The samples were prepared with an automated

system (MicroLab STAR, Hamilton Company, Reno, NV). For qual-

ity control purposes, a recovery standard was added before the first

step of the extraction. To remove protein and dissociated small

molecules bound to protein or trapped in the precipitated protein

matrix and to recover chemically diverse metabolites, proteins were

precipitated with methanol under vigorous shaking for 2 min (Glen

Mills GenoGrinder 2000) and centrifuged. The resulting extract was

divided into four fractions: one each for analysis by ultraperfor-

mance liquid chromatography-tandem mass spectroscopy (UPLC-

MS/MS) with positive ion-mode electrospray ionization, UPLC-MS/

MS with negative ion-mode electrospray ionization, and gas

chromatography-mass spectrometry; one fraction was reserved as a

backup.

Inflammatory protein markers

In the plasma samples, inflammatory protein markers were deter-

mined with the Olink Inflammation panel (Olink Bioscience,

Uppsala, Sweden) (Datasets EV9–EV11). Briefly, each sample was

incubated with 92 DNA-labeled antibody pairs (proximity probes).

When an antibody pair binds to its corresponding antigens, the

corresponding DNA tails form an amplicon by proximity exten-

sion, which can be quantified by high-throughput, real-time PCR.

Probe solution (3 ll) was mixed with 1 ll of sample and incu-

bated overnight at 4°C. Then, 96 ll of extension solution contain-

ing extension enzyme and PCR reagents for the pre-amplification

step was added. The extension products were mixed with detec-

tion reagents and primers and loaded on the chip for qPCR analy-

sis with the BioMark HD System (Fluidigm Corporation, USA). To

minimize inter and intra-run variation, the data were normalized

to both an internal control and an interpolate control. Normalized

data were expressed in arbitrary units (Normalized Protein

eXpression, NPX) on a log2 scale and linearized with the formula

2NPX. A high NPX indicates a high protein concentration. The limit

of detection, determined for each of the 92 assays, was defined as

three standard deviations above the negative control (back-

ground).

Statistical analysis

Values are expressed as the mean � standard deviation (SD)

(continuous variables) or as n (%). Safety and exploratory effi-

cacy endpoints were analyzed in all randomized patients who

received CMA. Differences in clinical and physiological variables

between time points were analyzed by paired t-test, followed by

one-way ANOVA to find shifts between CMA and placebo groups

at each time point. Missing values were removed in a pairwise

fashion.

For analysis of plasma metabolomics, raw data from Day 14

and Day 70 in both groups were scaled to data on Day 0.

Metabolite changes in the CMA group versus the placebo group

over time (Dataset EV6) were analyzed by one-way ANOVA. Dif-

ferences between the CMA and placebo groups on Day 0, Day

14, and Day 70 were also calculated (Dataset EV7). The calcula-

tion was done by pairing each subject from different visits and

adjusted for weight loss in a linear model using the limma pack-

age in R (v4.0.2). Differences were considered significant at

P < 0.05.
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For analysis of plasma proteomics, raw data from Day 14 and

Day 70 were scaled to data on Day 0. Subsequently, ANOVA

was used to calculate the CMA group changes versus placebo

over time (Dataset EV10). P < 0.05 was considered statistically

significant.

Finally, Spearman correlation analysis (false discovery rate

< 0.05) was used to analyze the association between individual

components of CMA and other metabolites (Dataset EV8) and

between the significantly altered clinical parameters (e.g., hepatic

fat and plasma levels of ALT, AST, uric acid, and creatinine) and

other metabolites (Dataset EV13). Spearman correlation analysis

was also used to study the associations between the plasma protein

levels and the plasma metabolite levels (Dataset EV12).

Metagenomic data analysis

Fresh stool and saliva specimens were collected and preserved using

DNA/RNA Shield Fecal Collection Tubes (Zymo Research, Irvine,

CA) and DNA/RNA Shield Collection Tube (Zymo Research, Irvine,

CA), respectively. Saliva samples were collected during the visit;

however, stool collection kits were provided to the patients and

advised to collect stool samples in the last 24 h of the visit. DNA

extractions from the fecal samples were done using QIAamp Power-

Fecal Pro DNA Kit (Qiagen, Hilden, Germany) and the saliva

samples using QIAamp DNA Microbiome Kit (Qiagen, Hilden,

Germany). All protocol procedures were performed according to the

manufacturer’s instructions. Quantification of extracted DNA was

determined fluorometrically on the Qubit� 3.0 Fluorometer (Thermo

Fisher Scientific, United States) using the QubitTM dsDNA HS Assay

Kit. DNA purity was determined via 260/280 and 260/230 ratios

measured on the NanoDrop 1000 (Thermo Fisher Scientific, United

States). The SMARTer Thruplex DNA-Seq (Takara Bio) was used for

library preparation (Option:350 bp; Category: low input). Samples

were sequenced on NovaSeq6000(NovaSeq Control Software 1.7.0/

RTA v3.4.4) with a 151nt (Read1)-10nt(Index1)-10nt(Index2)-151nt

(Read2) setup using “NovaSeqXp” workflow in “S4” mode flow cell.

The Bcl to FastQ conversion was performed using bcl2-

fastq_v2.20.0.422 from the CASAVA software suite. The quality

scale used is Sanger/phred33/Illumina 1.8+.

Raw paired-end metagenomic data were analyzed using

Metaphlan3 (Beghini et al, 2021) to extract each sample’s taxo-

nomic profiles. The abundant data were then analyzed using the

Wilcoxon rank-sum test to identify the species difference between

subjects with no steatosis compared with the other groups. Spear-

man correlation analysis was used to analyze the associations

between selected analytes and the taxonomic abundance data.

The correlation between oral and gut metagenomics data were

performed for the species with abundance > 1% in at least 5

subjects. The SciPy package was used. All analyses were done

using Python 3.

Generation of multi-omics network

Multi-omics network was generated based on the Spearman correla-

tions, and the significant associations (FDR < 0.05) are presented.

The analyses were performed with the SciPy package in Python 3.7.

Centrality analysis on the network was performed using iGraph

Python.

Data and materials availability

All clinical, biochemical, metabolomic, and proteomic data associated

with this study are available in the main text or the supplementary

materials. The raw oral and gut metagenomic data have been deposited

at the European Genome-phenome Archive (EGA) which is hosted at

the EBI and the CRG, under accession number EGA: EGAS00001005616

(https://ega-archive.org/studies/EGAS00001005616).

Expanded View for this article is available online.
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