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SUMMARY

Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver dis-
ease worldwide.We performed network analysis to investigate the dysregulated
biological processes in the disease progression and revealed the molecular mech-
anism underlying NAFLD. Based on network analysis, we identified a highly
conserved disease-associated gene module across three different NAFLD co-
horts and highlighted the predominant role of key transcriptional regulators
associated with lipid and cholesterol metabolism. In addition, we revealed the
detailedmetabolic differences between heterogeneous NAFLD patients through
integrative systems analysis of transcriptomic data and liver-specific genome-
scale metabolic model. Furthermore, we identified transcription factors (TFs),
including SREBF2, HNF4A, SREBF1, YY1, and KLF13, showing regulation of he-
patic expression of genes in the NAFLD-associated modules and validated the
TFs using data generated from amouse NAFLDmodel. In conclusion, our integra-
tive analysis facilitates the understanding of the regulatory mechanism of these
perturbed TFs and their associated biological processes.

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is considered as one of the most important causes of liver dis-

ease, worldwide (Asrani et al., 2019). The global prevalence of NAFLD was estimated to be 25% and has

increased rapidly (Huang et al., 2021; Younossi et al., 2016, 2018). NAFLD is characterized by the hepatic

accumulation of triglycerides, spanning from simple non-alcoholic fatty liver (NAFL) to non-alcoholic stea-

tohepatitis (NASH) that might progress to cirrhosis and hepatocellular carcinoma (HCC) (Friedman et al.,

2018; Huang et al., 2021; Ioannou et al., 2019). Moreover, NAFLD is strongly associated with obesity, dia-

betes, and cardiovascular disease, therefore, it has drastically increased in patient groups with these dis-

eases (Golabi et al., 2019; Ye et al., 2020; Younossi et al., 2019). Despite the high degree of popularity,

no effective therapies are yet approved for the treatment of NAFLD (El-Agroudy et al., 2019; Mullard,

2020; Newsome et al., 2021; Stower, 2021). Hence, a comprehensive understanding of the underlying mo-

lecular mechanism of NAFLD is critical for the development of novel approaches for its prevention and

treatment.

Biological networks provide a robust framework for integrating omics data, elucidating pathophysiological

responses, and revealing the underlyingmolecular mechanisms involved in the progression of disease (Cal-

abrese et al., 2017; Mardinoglu et al., 2018; Nayak et al., 2009). Biological networks, including protein-pro-

tein interaction networks, transcriptional regulatory networks (RNs), gene co-expression networks (GCNs),

genome-scale metabolic models (GEMs) and integrated networks (INs), are widely used in systems analysis

(Mardinoglu et al., 2018). The central goal of biological network analysis is to identify critical functional units

(so-called modules) and their constituent genes (Califano et al., 2012; Choobdar et al., 2019). By investi-

gating the importance of these functional modules in disease pathogenesis, it is possible to understand

the biological mechanisms that underpin the disease (Cerami et al., 2010; Huan et al., 2013; Wainberg

et al., 2021). In particular, GCNs of 17 human cancers and 46 human tissues have been generated and

used to gain insights into disease mechanisms by identifying the key biological components of the cancers

or tissues (Arif et al., 2021; Lee et al., 2018; Uhlen et al., 2017). GEMs are reconstructed by incorporating all

biochemical reactions and transport processes in a cell or tissue and have been extensively used to
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discover potential biomarkers and drug targets, as well as to reveal the mode of action of a drug (Lewis and

Kemp, 2021; Mardinoglu et al., 2018).

To date, GCNs have been used for investigating the causal mechanisms underlying NAFLD using mouse

population data (Chella Krishnan et al., 2018) and human population data (Zhang et al., 2020) and for inte-

grative analysis of mouse model data and patients data (Saeed, 2021). However, there remains a lack of

holistic studies of samples that cover a large spectrum of disease severity. Moreover, the heterogeneity

of clinical manifestations among NAFLD patients acts as an essential impediment for the discovery of crit-

ical pathogenic drivers, requiring in-depth systematic analysis consequently (Alonso et al., 2017). Recently,

several liver-biopsy proved transcriptomics data from large patients’ cohorts had been conducted (Azzu

et al., 2021; Govaere et al., 2020; Hoang et al., 2019), and these datasets may be used to provide significant

functional insights based on network analysis that cannot be derived from individual gene-level analysis.

In this study, we employed an integrative systems biology approach by integrating NAFLD transcriptomics

data with biological networks and elucidated the molecular mechanisms underlying NAFLD progression.

We first generated GCNs for liver tissue of normal and NAFLD patients based on transcriptomics data and

identified the perturbed modules associated with the severity of NAFLD. Secondly, we employed a liver-

specific GEM called iHepatocytes2322 to analyze the differential expression data, and gained insights

into detailed metabolic differences in NAFLD. Third, we subsequently validated the perturbed modules

using transcriptomics data from another two independent studies and highlighted the disease-associated

modules that are conserved across multiple NAFLD cohorts by combing functional and topological simi-

larities. Next, we used a liver cancer data set in The Cancer Genome Atlas (TCGA) to investigate if the dys-

regulated expression of genes in the disease-associated modules is relevant to patient outcome. Finally,

we performed transcription factor (TF)-target regulatory network analysis, identified TFs that regulate dis-

ease-associated modules, and validated those TFs with the transcriptomics data from a mouse NAFLD

model fed by high-sucrose diet (HSD).

RESULTS

Generation of co-expression networks for liver tissue

To identify the robust co-expressed genes showing transcriptional differences between the liver tissue of

normal subjects and NAFLD patients, we first constructed GCN of 226 non-diseased liver tissue based on

the transcriptomics data from the Genotype-Tissue Expression (GTEx) database (GTEx analysis V8) (Con-

sortium, 2013) and GCN of liver tissue from NAFLD cohort including 10 normal samples, 50 patients with

NAFL, and 155 patients with NASH (Govaere et al., 2020) (Figure 1A). We filtered out lowly expressed genes

for each data set based on their mean gene expression level (TPM < 1) and performed Spearman’s rank

correlation test between each gene pair. All p values were adjusted by FDR correction (Benjamini–Hoch-

berg). Afterward, we retained gene pairs with top 10% significantly positive correlation (FDR < 0.05) on

the networks (Figure 1A) and used the Leiden algorithm (Traag et al., 2019) to identify modules of genes

from the network. In total, Leiden graph-based clustering identified six and five modules of genes in the

GTEx cohort and NAFLD cohort, respectively. Each module in the same cohort consists of uniquely as-

signed genes with a substantial similarity between gene expression profile (Figure 1B; Data S1). Of note,

we found that gene members of any module in the GTEx cohort were different from that of modules in

the NAFLD cohort even though 95.9% genes comprising modules in the NAFLD cohort were included

by GTEx modules (Figure 1C).

Identification of perturbed modules in NAFLD

We investigated whether the differences in module composition correlated with themolecular changes un-

derlying NAFLD progression. We first identified differentially expressed genes (DEGs) to reveal the global

transcriptomic differences in the liver of patients with NAFLD. We observed that 3,167 and 3,285 genes

were significantly upregulated (adjusted p value < 0.01) between NAFL and control samples and between

NASH and control samples, respectively (Figure 1D; Data S2). Enrichment analysis in KEGG pathway

showed that the upregulated DEGs are mostly enriched in the pathways associated with endocytosis,

axon guidance, adherens junction, insulin resistance, and insulin signaling (Figure 1E; Data S3). Moreover,

we found that 3,176 and 3,140 genes were significantly downregulated between NAFL and control samples

and between NASH and control samples, respectively (Figure 1D; Data S2). Enrichment analysis showed

that downregulated DEGs enriched in pathways associated with oxidative phosphorylation, spliceosome,

thermogenesis, and proteasome (Figure 1E).
2 iScience 24, 103222, November 19, 2021
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Figure 1. Sample information of studied cohorts and construction of co-expression networks

(A) Transcriptome data of liver tissue were obtained from GTEx, NAFLD cohort with 226 and 215 samples ranging from

normal, NAFL, NASH, respectively. Spearman rank-order correlation coefficient analysis was applied to calculate the

correlation between gene pairs after removing the lowly expressed genes (TPM < 1), and the Leiden algorithm was used

to detect modules of significantly correlated genes. The label (number) of the module assigned by the algorithm.

(B) The numbers of genes consist of the individual module in each cohort.

(C) The heatmap shows the percentage of overlapped genes between module pairs in NAFLD and GTEx cohorts.

(D) The Venn diagram of differentially expressed genes (adjusted p value < 0.01) between patients with NAFLD and

control samples.

(E) KEGG pathway analysis shows pathways that were significantly altered in patients with NAFLD. Up- and down-

regulated pathways are shown in blue and red, respectively—only pathways with adjusted p value (padj) < 0.01 are

presented (see also Data S3. The size of the bubble is scaled by �log10(padj) for each KEGG pathway term.

(F) Significant (p < 0.05, hypergeometric test) overlap between module pairs between GTEx and NAFLD cohorts and

overlap between the module and dysregulated genes associated with NAFLD. GTEx, genotype-tissue expression;

NAFLD, non-alcoholic fatty liver disease; NAFL, non-alcoholic fatty liver; NASH, non-alcoholic steatohepatitis; TPM,

transcripts per kilobase million.
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Figure 2. The most significant reporter metabolites between patients with NAFLD and control samples through the employment of

iHepatocytes2322

Reporter metabolites were calculated for the up- and down-regulated genes for each comparison. Top30-ranked reporter metabolites and subsystems in

iHepatocytes2322 associated with up- and down-regulated genes in each comparison are presented, respectively. Color is proportional to the minus

logarithm of the p value (�log10(p value)), see also Data S4.
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We also examined the enrichment of those dysregulated DEGs associated with NAFLD in each co-expres-

sion module identified in GTEx and NAFLD cohort data. The results showed that module 1 andmodule 3 of

the NAFLD cohort with 215 samples (cohort_215_M1 and cohort_215_M3) are significantly enriched (hyper-

geometric test p valuez 0) by upregulated and downregulated DEGs associated with NAFLD, respectively

(Figure 1F). In particular, 58.3% of genes (1,253 of 2,149) in cohort_215_M1 and 92.2% of genes (306 of 332)

in cohort_215_M3 are significantly upregulated and downregulated in NAFL vs control groups, respec-

tively. Of all genes, 55.1% of genes in cohort1_215_M1 and 90.7% of genes (301 of 332) in cohort_215_M3

are significantly upregulated and downregulated in NASH vs control groups, respectively. Notably, we

found both cohort_215_M1 and cohort_215_M3 are significantly overlapped (hypergeometric test p value =

2.17 3 10�14 and 3.11 3 10�8) with module 1 in GTEx cohort (GTEx_M1), which were overrepresented by

both upregulated and downregulated DEGs associated with NAFLD (Figure 1F). Interestingly, KEGG

enrichment analysis of genes in those modules suggests that the significantly enriched pathways are

consistent with the dysregulated pathways enriched by DEGs (Figures 1E and S2A). Moreover, we found

cohort_215_M4 are significantly enriched by upregulated genes (15 and 21 of 38 in NAFL vs control and

NASH vs control, respectively) and only significantly overlapped with GTEx_M3 (hypergeometric test p

value = 4.11 3 10�13). Taken together, co-expression network analysis identified modules of genes that

are significantly perturbed in patients with NAFLD.

Altered metabolism in NAFLD patients

To further evaluate the detailed metabolic changes underlying NAFLD progression, we identified reporter

metabolites (Patil and Nielsen, 2005), around which the most significant transcriptional changes occur, us-

ing differential expression data from NAFLD and network topology provided by iHepatocytes2322 (Mardi-

noglu et al., 2014) (Figure S2B). Such reporter metabolites can thus be used to identify the key dysregulated

regions of the metabolic network. A total of 321 metabolites were significantly (p value <0.05) associated

with upregulated genes in either NAFL vs control or NASH vs control (Figures 2 and S2C; Data S4). Among

these, the most significant reporter metabolites associated with upregulated genes in NAFL vs control

were those involved in arginine and proline metabolism, glycerophospholipid metabolism, and nucleotide

metabolism. The top reporter metabolites associated with upregulated genes between NASH and control

samples were involved in beta-oxidation of fatty acids, cholesterol biosynthesis, and chondroitin/heparan

sulfate biosynthesis. Chondroitin sulfate (CS) and heparan sulfate (HS) are the essential components of pro-

teoglycans (PGs), which have been proposed as potential biomarkers for NASH diagnosis and staging

of NAFLD by integrative analysis of transcriptomic data obtained from patients with NAFLD and GEM

(Mardinoglu et al., 2014). The analyses from the current investigation are utterly consistent with the

previous study. In addition, we observed 215 metabolites that were significantly associated with downre-

gulated genes in NAFLD, involving in folate metabolism and oxidative phosphorylation (Figures 2 and S2D;

Data S4).

Validation of perturbed modules in two independent NAFLD cohorts

To validate whether modules related to significant transcriptomics and metabolic changes in patients with

NAFLD can truly reflect the perturbations in a disease-specific manner, we analyzed GCNs generated using

liver-biopsy transcriptomics data sets from two independent NAFLD cohorts with 75 and 58 samples,

respectively (Azzu et al., 2021; Hoang et al., 2019). To avoid repeated IDs, we assigned cohort 1 to the stud-

ied NAFLD cohort, and 2 and 3 for NAFLD cohorts for validation in the downstream analysis. By the same

method of constructing GCN for the first NAFLD cohort, we identified four and eight modules of genes in

NAFLD cohort 2 and 3, respectively (Figures S3A and S3B). To explore module similarity among NAFLD

cohorts, we calculated the Jaccard index between each pair of modules from different NAFLD cohorts

and performed hypergeometric test to evaluate the significance of the observed overlap in gene members

(Figures 3A, 3B, and 3C; Data S1). To begin with, we tested the modules between NAFLD cohort 1 and

cohort 2. The results showed that genes in cohort1_215_M4 were only significantly overlapped (29 of 38;

Jaccard index = 0.388; hypergeometric test p value = 1.66 3 10�69, Figures 3A and 3D) with genes in mod-

ule 3 of NAFLD cohort 2 with 75 samples (cohort2_75_M3). We next tested the module pairs in NAFLD
iScience 24, 103222, November 19, 2021 5
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Figure 3. Validation of disease-related modules using two independent NAFLD cohorts

(A–C) Hierarchical clustering of Jaccard Index between module pairs from NAFLD cohort 1 and 2; NAFLD cohort 1 and 3;

NAFLD cohort 2 and 3. Color scales representing the range of the Jaccard index. Asterisk indicates the statistical

significance of the overlap between gene members in any two modules from the different cohorts.

(D) Venn diagram shows numbers of genes overlapped between cohort1_215_M4, cohort2_75_M3, and cohort3_58_M7.

(E) Dot-plot heatmap shows top 20 significantly (‘‘q-value FDR B&H’’ < 0.05) enriched diseases by genes in each module

(cohort1_215_M4, cohort2_75_M3, and cohort3_58_M7). The size of each dot is proportional to the number of genes

enriched in each disease term.

(F) The table shows the results from a hypergeometric test between liver-specific proteome (HPA) and disease-associated

modules in NAFLD cohorts, the overlap with p value less than 0.05 was considered as significant.
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cohort 1 and cohort 3, and found cohort1_215_M4 also shared 29 genes with module 7 of NAFLD cohort 3

with 58 samples (cohort_3_58_M7) (Jaccard index = 0.434; hypergeometric test p value = 3.733 10�71, Fig-

ures 3B and 3D). Interestingly, the genes in cohort2_75_M3 were significantly overlapped (45 of 80; Jaccard

index = 0.425; hypergeometric test p value = 1.82 3 10�86, Figures 3C and 3D) with genes in co-

hort3_58_M7 as well.
6 iScience 24, 103222, November 19, 2021
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To validate if those conservedmodules inNAFLD cohorts have a similar expression pattern in normal liver tissue,

we subsequently assessed the module similarity and overlap between any two modules between the GTEx

cohort and NAFLD cohorts. Hierarchical clustering of the Jaccard index between module pairs showed that a

distinct cluster consisting of cohort1_215_M4, cohort2_75_M3, and cohort3_58_M7 was only significantly

over-represented by module 3 in GTEx cohort (GTEx_M3), which contains 1,975 genes (Figures 1B and S3C).

We found that more than 70% genes in cohort1_215_M4 (27 of 38; hypergeometric test p value = 4.11 3

10�13), cohort2_75_M3 (57 of 80; hypergeometric test p value = 4.973 10�27), and cohort3_58_M7 (50 of 71; hy-

pergeometric test p value = 2.92 3 10�24) were included by module GTEx_M3 (Figure 4A).

For a systematic evaluation on biological functions related to the modules, we quantified the statistical signifi-

cance of enrichment of genes with the association in disease-related gene sets obtained from DisGeNET data-

base (https://www.disgenet.org/) (Pinero et al., 2020), liver-specific proteome inHumanProteinAtlas (HPA) data-

base (http://www.proteinatlas.org/) (Uhlen et al., 2015), and KEGG pathway gene sets. We found that genes in

cohort1_215_M4, cohort2_75_M3, and cohort3_58_M7 were significantly over-represented by multiple liver dis-

ease-related gene sets, including NAFLD and steatohepatitis (Figure 3E; Data S5). Interestingly, these three

modules were also significantly enriched in coronary heart disease, coronary artery disease, and coronary arte-

riosclerosis. We further evaluated the overlap of genes in each of three disease-associated modules with 936

liver-specific genes defined byHPA (Fagerberg et al., 2014; Uhlen et al., 2015; Yu et al., 2015). The results showed

that genes in cohort1_215_M4 (10 out of 38; hypergeometric test p value = 0.0005), cohort2_75_M3 (30 out of 80;

hypergeometric test p value = 1.68 3 10�14), and cohort3_58_M7 (22 out of 71; hypergeometric test p value =

6.02 3 10�10) are highly enriched with liver-specific genes (Figure 3F). In addition, we observed that genes in

GTEx_M3,which showshighmodule similaritywith those threemodules identified indiseases cohorts, are signif-

icantly enriched in the peroxisome, branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) degra-

dation, and fatty acid degradation (Figure 4B). However, steroid biosynthesis and terpenoid backbone biosyn-

thesis were the most significantly enriched pathways in all the three modules of disease cohorts. Moreover, fatty

acid biosynthesis, citrate cycle (TCA cycle), and insulin signaling pathway were only significantly enriched in the

modules of disease cohort(s).

Topological features of genes in NAFLD-associated modules

The analysis of topological properties can provide important information about hub genes or other influ-

ential genes in the module. To understand the interplay of genes in the module, we then obtained several

key network properties using the ‘‘NetworkAnalyzer’’ in Cytoscape to analyze the disease-associated mod-

ules. In our workflow, we used degree and closeness centrality to evaluate the importance of nodes in a

module. In an undirected network, the degree of a node is the number of edges linked to this node and

a node with a high degree has been considered as functionally significant (Doncheva et al., 2012). Genes

with high closeness centrality are considered as a controlling point of molecular communication (Miryala

and Ramaiah, 2019).

Topological analysis showed that gene FDFT1 has the highest degree in both cohort1_215_M4 (26 edges)

and cohort2_75_M3 (41 edges), whereas geneMVD has the highest degree in cohort3_58_M7 (Figures 4C–

4E, S4, and S5A; Data S6). The other genes with high connectivity are HMGCS1, DHCR7, and ACSS2 (23

edges, respectively), and ACAT2 (22 edges) in cohort1_215_M4; MVD (40 edges), MSMO1 and SQLE (37

edges, respectively), and IDI1 and NSDHL (36 edges, respectively) in cohort2_75_M3; IDI1(30 edges),

LSS, CYP51A1, FDFT1, and SQLE (29 edges, respectively) in cohort3_58_M7. Interestingly, we observed

a highly positive correlation between the degree of 33 genes overlapped in cohort1_215_M4 and co-

hort2_75_M3 (Spearman’s correlation = 0.58, p = 0.00036, Figure 4C), which indicates that those two mod-

ules have a similar topological structure. Similarly, a highly positive correlation between degree of 33 genes

shared by cohort1_215_M4 and cohort3_58_M7 (Spearman’s correlation = 0.73; p = 1.7 3 10�6, Figure 4D)

and that of degree of 45 genes shared by cohort2_75_M3 and cohort3_58_M7 (Spearman’s correlation =

0.81; p = 1.7 3 10�11, Figure 4E) were also observed. Moreover, the top five genes with the highest close-

ness centrality in cohort1_215_M4, cohort2_75_M3, and cohort3_58_M7 are also highly conserved (Fig-

ure S5B). We also observed a strong correlation between closeness centrality of shared genes in any dis-

ease-associated module pairs of NAFLD cohorts (Figure S5C).

Validation of topological features in an HCC cohort

Given that NAFLD has emerged as the fastest-growing cause of HCC (Huang et al., 2021; Ray, 2018), we next

investigated whether the expression of the genes in NAFLD disease-associated modules, especially genes
iScience 24, 103222, November 19, 2021 7
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Figure 4. Functional enrichment and topological structure analyses of disease-associated modules

(A) Venn diagram shows numbers of genes overlapped between GTEx_M3 cohort and cohort1_215_M4 (hypergeometric

test p value = 4.11 3 10�13), cohort2_75_M3 (hypergeometric test p value = 4.97 3 10�27), and cohort3_58_M7

(hypergeometric test p value = 2.92 3 10�24), respectively.

(B) Dot-plot heatmaps are showing KEGG pathways enriched in different modules. The color differences of dots indicate

the studied cohort (GTEx or NAFLD) in which themodule detected. The size of each dot is proportional to the significance

(�log10(padj); padj represents ‘‘q-value FDR B&H’’ with value <0.05) of enrichment for each KEGG pathway term.

(C–E) Correlation between degrees among disease-associated modules from different cohorts. The correlation was

evaluated by Spearman correlation coefficients.
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with high-connectivity, is predictive of patients with HCC using the Liver Hepatocellular Carcinoma dataset

(https://portal.gdc.cancer.gov/projects/TCGA-LIHC) (Figure S6A). The expression of 19 genes in co-

hort1_215_M4, 39 genes in cohort2_75_M3 and 40 genes in cohort3_58_M7 are significantly (log rank p value <

0.05) associated with the survival of patients, respectively (Figure S6B; Data S7). Among these, the high expres-

sion of 19 genes in cohort1_215_M4, 28 genes in cohort2_75_M3, and 31 genes in cohort3_58_M7 are signifi-

cantly associated with an unfavourable survival of patients. For example, the high expression of FDFT1 (log
8 iScience 24, 103222, November 19, 2021
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Figure 5. Regulatory relationship between enriched transcription factors and associated target genes in disease-associated modules

(A) enriched transcription factors in GTEx_M3, cohort1_215_M4, cohort2_75_M3, and cohort3_58_M7.

(B–F) mRNA hepatic expression of the enriched transcription factors including SREBF2, HNF4A, SREBF1, YY1, and KLF13.

(G–I) the regulatory network between enriched transcription factors and associated target genes in cohort1_215_M4, cohort2_75_M3, and cohort3_58_M7,

repectively. The regulation between transcription factor and its target was retrieved from the TRRUST database.
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rank p value = 6.543 10�4) with the highest connectivity in both cohort1_215_M4 and cohort2_75_M3 andMVD

(log rank p value = 1.263 10�3) with the highest connectivity in cohort3_58_M7 are significantly associated with

poor patient outcome (Figures S6C and S6D). In addition, some of these genes have already been described as

associated with NAFLD associated HCC (NAFLD-HCC). For instance, the high expression of SQLE, a second

rate-limiting enzyme involved in de novo cholesterol synthesis with relatively high connectivity in disease-asso-

ciatedmodules (Figures S4 and S5A), was predictive of unfavourable survival of HCCpatients (log rank p value =

7.393 10�4; Figure S7). Indeed, recent studies have demonstrated that SQLE acts as an independent prognostic

factor in patients withNAFLD-HCC, and SQLE inhibition suppressedNAFLD-HCCgrowth in vitro and in vivo (Liu

et al., 2018a; Ray, 2018).

Identification of TFs that regulate the NAFLD-associated modules

To investigate the transcriptional regulation in maintaining homeostasis and alterations in the disease

state, we performed TF enrichment analysis (hypergeometric test) using the genes from the disease-asso-

ciatedmodules andmodule 3 in GTEx, which shows high similarity to disease-associatedmodules (Figure 5;

Data S8), based on TRRUST database (Han et al., 2018). Our results indicated that HNF4A, HNF1A,

PPARGC1A, SREBF2, and PPARA are the most significantly enriched TFs in GTEx_M3 (Figure 5A). We

observed that HNF4A, SREBF1, SREBF2, YY1, and KLF13 are significantly enriched TFs in all three dis-

ease-associated modules. We also found significant upregulation of hepatic expression of SREBF1,

SREBF2, HNF4A, and KLF13 in NAFL and NASH compared to the control group (adjusted p value <

0.05, Figures 5B–5F; Data S2).

We then constructed the regulatory networks for the enriched TFs and associated targets in each of themodules

(Figures 5G–5I and S8). We observed that HNF4A, an important transcriptional factor mainly expressed in the

liver, regulates the expression of genes involved in lipid metabolism and fatty acid oxidation, including choles-

terol/triglyceride transporter (e.g., ABCG8, ABCG5 and MTTP), oxidoreductase (e.g., AKR1C4, CYP2D6, and

CYP2B6) in the regulatory network of GTEx_M3 (Figure S8). As known, SREBF1 and SREBF2 regulate the expres-

sion of genes associated with de novo lipogenesis (DNL) (e.g., FASN, SCD, ACACB), synthesis and cellular up-

take of cholesterol (e.g., HMGCR, FDFT1, NPC1L), respectively. Moreover, PPARA regulates the expression of

genes involved in peroxisomal and mitochondrial b-oxidation, including ACSL1, CPT1A, CYP1A1, and

ACOX1. Apolipoprotein C3 (APOC3), a central regulator of plasma triglyceride levels by inhibiting the removal

of remnants of triglyceride-rich lipoproteins, is the most highly regulated gene by HNF4A, NR0B2, PPARA, and

PPARGC1A in the regulatory network of GTEx_M3. Interestingly, low-density lipoprotein receptor (LDLR, a key

receptor that is internalized by endocytosis) is the most highly regulated genes in the disease-associated mod-

ules (Figures 5G–5I) by SREBF1, SREBF2,HNF4A, YY1, and KLF13. This indicates that highly co-expressed genes

involved in cholesterol metabolism in disease-associated modules are essential compared with the other endo-

cytosis-related genes that are co-expressed in other modules in the same cohort. In addition to the well-estab-

lished regulation of LDLR activation by SREBFs andHNF4A, YY1 and KLF13, two specific TFs regulating the dis-

ease-associated modules, also showed a regulatory role in the transcriptional regulation of LDLR. Taken

together, the complicated regulation of LDLR in the disease-associated modules rather than endocytosis in

normal liver tissue might play an essential role in the dysregulation of lipid metabolism underlying the NAFLD

pathogenesis.

Validation of TFs in a mouse NAFLD model

Next, we generated liver transcriptomics data from a mouse NAFLD model fed by HSD and performed re-

porter TF analysis (Huang et al., 2017; Liu et al., 2019; Oliveira et al., 2008) by integrating with the same

network of TF-target from TRRUST database (Han et al., 2018). We validated the TFs that are enriched in

disease-associated modules (Figure 6A). The reporter TF algorithm was used to calculate the statistically

significant expression changes of gene sets controlled by TFs. To study the regulation of module of genes

using this method, we first examined the reporter TFs that are significantly associated with the upregulated

and downregulated genes in NAFL vs control and NASH vs control, respectively (Data S9). The analysis

identified 12 reporter TFs of genes in cohort1_215_M4, of which 9 were associated with upregulated genes
10 iScience 24, 103222, November 19, 2021
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Figure 6. Validation of transcription factors in a mouse NAFLD model

(A) Reporter transcription factor analysis was used to validate transcription factors identified in disease-associated modules using transcriptomics data of

NAFLD cohort 1 and newly generated from a mouse NAFLD model.

(B) Conserved disease-associated modules revealed the dysregulation in the mevalonate pathway, de novo lipogenesis, glycolysis, and lipolysis.
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in NAFLD, including,ATF4,DDIT3,HDAC3,HNF4A, KLF5,NFYC, SREBF1, SREBF2, and YY1. 2 reporter TFs

(VDR and WT1) are associated explicitly with downregulated genes in cohort_215_M4 between patients

with NAFL and control samples. KLF13 was significantly associated with upregulated genes between

NASH and control samples. Among these reporter TFs, five of them (HNF4A, SREBF1, SREBF2, YY1, and

KLF13) were also identified by hypergeometric test for cohort1_215_M4 (Figure 5A). Between mice fed

by HSD and chow diet (Figure 6A; Data S10), 5 reporter TFs (including KLF5, KLF13, SREBF1, SREBF2,

and CREB1) were identified, showing significant association with upregulation of genes using correspond-

ing human orthologs. Taken together, our analysis validated SREBF1, SREBF2, and KLF13 as TFs that regu-

late the hepatic expression of genes in cohort1_215_M4.

Hepatic co-expression networks reflect dysregulated cholesterol homeostasis and de novo

lipogenesis in the NAFLD cohorts

In our network analysis, we found conserved disease-associated modules across three independent

NAFLD cohorts and more than 70% of the genes involved in the modules are associated with metabolic

functions. Most of the metabolic genes in this consensus module are associated with cholesterol meta-

bolism. For instance, 13 genes, namely HMGCS1, HMGCR, MVD, IDI1, FDPS, FDFT1, SQLE, LSS,

CYP51A1, TM7SF2, NSDHL, HSD17B7, EBP, and DHCR7, which are shared among the three disease-asso-

ciated modules from different cohorts, and 5 genes, namely AACS, MVK, MSMO1, DHCR24, and SC5D

which are included in at least one of the disease-associated modules from different cohorts, are involved

in the endogenous synthesis of cholesterol (Figure 6B). LDLR and NPC1L1, responsible for the uptake of

cholesterol, are also found in the disease-associated modules from all three cohorts. In addition, several

genes, namely ACLY, ACSS2, ACACA, FASN, SCD, FADS1, FADS2, ELOVL6, HSD16B12, GPAM, PNPLA3,

and TM6SF2, which are involved in de novo lipogenesis and lipolysis, are also included in the disease-

related modules in at least one of the cohorts. Finally, genes encoding glycolytic enzymes, such as GCK,

PGD, ALDOB, ALDOC, PKLR,ME1, and PDHB, are also found in the disease-related modules. In summary,

co-expression network analysis revealed a strong connection between the disease-associated clusters with

the cholesterol metabolism, de novo lipogenesis and glycolysis in the liver and suggests their potential

roles in the development of NAFLD.

DISCUSSION

Here, we applied a systems biology approach on human liver transcriptomics data to elucidate the dysre-

gulated biological processes involved in NAFLD and identified potential regulators via integrating with a

transcriptional regulatory network. Our analysis identified highly conserved disease-associated gene mod-

ules across three different NAFLD cohorts. These modules are specific to the disease networks, and we

could not find such modules in the network generated from normal subjects (GTEx cohort). Therefore,

these gene modules could play a critical role in the development of NAFLD indicating their importance

to the mechanism of the disease. Interestingly, we found the majority of the genes (�70%) in these dis-

ease-associated modules identified in the NAFLD cohort are included in the big gene module 3 of the

GTEx cohort, which has 1,975 genes, suggesting that the disease-associated module and its related bio-

logical functions are co-regulated with a large gene group in normal subjects and dysregulated with the

progression of NAFLD.

In addition, we showed that enriched TFs that regulate the disease-associated modules, which can facili-

tate our understanding of the regulatory mechanism of these perturbed biological processes. Transcrip-

tion regulatory networks analysis indicated that SREBF1, SREBF2, HNF4A, YY1, and KLF13 are the most

prominent regulators of gene expression in disease-associated modules, 3 of which (SREBF1, SREBF2,

and KLF13) were validated using the transcriptomics data generated from amouseNAFLDmodel. Notably,

KLF13 is reporter TF, specific to this disease-associated module but not for the module from the normal

subjects, suggesting their potential role in the development of NAFLD (Ericsson et al., 1999; Natesampillai

et al., 2006). It has been shown that selective overexpression of YY1 results in massive triglyceride accumu-

lation and moderate insulin resistance in mice fed with HFD (Lu et al., 2014), and it may be a promising

target for fatty liver diseases (Wu et al., 2017). We also show that LDLR is a central target gene regulated
12 iScience 24, 103222, November 19, 2021
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by the enriched TFs in this disease-associatedmodule. It has been demonstrated that multiplemechanisms

are involved in protecting against excessive cholesterol accumulation in the liver (Goldstein and Brown,

2009; Natesampillai et al., 2006). LDLR-mediated endocytosis contributes to this process by removing

approximately 70% circulating cholesterol-enriched LDL and providing feedback transcriptional regulation

of cholesterol synthesis through SREBFs (Goldstein and Brown, 2009).

Our systematic analyses also highlight the significant reporter metabolites involved in CS and HS biosyn-

thesis, glycerophospholipid metabolism, folate metabolism, and oxidative phosphorylation. Such metab-

olites are consistent with the findings of previous studies and could be targeted for discovery of potential

biomarkers in diagnosis of NAFLD. We also find that most of the genes involved in the disease-associated

module are involved in metabolic pathways such as cholesterol metabolism, DNL, and glycolysis.

The liver plays a central role in cholesterol homeostasis, and growing evidence has shown that excess he-

patic cholesterol and its associated hepatic lipotoxicity is a predominant factor in the development of hu-

man NAFLD (Ioannou, 2016; Min et al., 2012). Abundant hepatic free cholesterol stimulates Kupffer cells

and hepatic stellate cells (HSCs), which are key mediators of fibrosis and inflammation, as well as mitochon-

drial dysfunction, and thus reflects the severity of disease (Musso et al., 2013). Notably, differential expres-

sion (DE) analysis pointed out significant upregulation of critical genes (adjusted p value < 0.05) in these

cholesterol-related pathways in the disease-related module, including HMGCR (the principal rate-limiting

enzyme in mevalonate pathway), NPC1L1 (a major gene in intestinal cholesterol absorption) in NASH

compared to control group (Data S2). We find scavenger receptor class B type I (SCARB1), which mediate

the uptake of HDL cholesterol directly, is significantly increased in NAFLD patients compared to the control

group. This suggests that upregulation of pathways in both synthesis and absorption of cholesterol may

associate with the increased hepatic cholesterol (Ioannou, 2016), as well as increased bile acids in NAFLD

patients (Jiao et al., 2018).

Additionally, recent studies have shown that high dietary cholesterol in the mice model is the causative fac-

tor for the progression of steatohepatitis to fibrosis and drives NAFLD associated HCC (Liu et al., 2018a;

Shen et al., 2020; Zhang et al., 2021). We, therefore, investigated whether the disease-associated modules

are predictive of patient outcome using the liver cancer data set. The results from Kaplan–Meier analysis

show that the high expression of �41% genes (12 of 29 genes identified in all three disease-associated

modules) (Figures S6 and S7) are significantly associated with poor survival of patients, for example,

FDFT1, MVD, DHCR7, SQLE, and MVD with high connectivity in these modules. Liu et al. demonstrated

that targeting SQLE can efficiently inhibit the NAFLD-HCC in cellular and animal models (Liu et al.,

2018a). Considering the characteristics of the co-expression mechanism among genes with similar func-

tions, this integrative network analysis reveals detailed molecules involved in the cholesterol metabolism

and thus proposes more potential therapeutical targets of effective treatment for preventing NAFLD-to-

HCC progression.

Moreover, in the disease-associated module, we also find genes associated with DNL. Generally, it is

believed that the triglyceride accumulation in the liver of NAFLD patients is caused by elevation of both

DNL and fat uptake (Donnelly et al., 2005; Perdomo et al., 2019). However, we do not find any genes related

to fat uptake in these disease-associated modules. In fact, CD36, the key free fatty acid transporter, is not

significantly changed between NAFLD and the control group (Data S2). The hepatic expression of FABP5,

another critical transporter for fat, is significantly lower in the patients than the control group. In addition,

most of DNL related genes are significantly upregulated in the NAFL and NASH patients compared with

the control group. Taken together, these findings suggest that the DNL, rather than free fatty acid uptake,

is the source of triglyceride accumulation in NAFLD patients.

Finally, we identified a few key enzymes involved in glycolysis and insulin signaling pathway which are

included in the disease-associated module. For instance, INSIG, a key player in the insulin signaling

pathway is included in the disease-associated modules among all three cohorts. A recent study has re-

ported that INSIG is a central regulator in a negative feedback loop ensuring the balance of lipid desatu-

ration and cholesterol composition and loss of INSIG1 improves liver damage and would healing NASH

progression (Azzu et al., 2021). In addition, GCK, which is a kinase specific to glucose, is involved in the

module of cohort 2, and it is significantly upregulated in the NAFLD patients compared with the normal

subjects (Data S2). In our previous study, we have reported that the GCK up-regulation is associated
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with elevated insulin resistance in patients and suggested an increased in influx from dietary glucose (Lee

et al., 2016). Moreover, we also observed that TKFC included in disease-associated module and up-regu-

lated in NAFLD patients. It has been reported that increased dietary fructose uptake could cause NAFLD in

both mouse and human patients (Jensen et al., 2018; Loomba et al., 2021). Therefore, these results high-

light the association between NAFLD and insulin resistance and suggest the potentially important contri-

bution of dietary glucose, fructose, and sucrose to development of the disease.

In summary, unlike previous studies with the limitation of a few human NAFLD transcriptome data or

focusing on individual genes influencingNAFLD progression, our network-driven approach reveals a highly

conserved disease-associated gene module across three heterogeneous cohorts including patients with

various degrees of NAFLD. In addition, our results highlight the predominant role of key transcriptional

regulators, including SREBF2, HNF4A, SREBF1, YY1, and KLF13 that are associated with lipid and choles-

terol metabolism. Our integrative study enabled a comprehensive view of the molecular processes and key

drivers associated with NAFLD, which provide molecular candidates in dysregulated pathways for devel-

oping effective therapies.
Limitations of the study

Although we have identified key transcriptional factors and validated their roles in dietary mice model, we

did not validate them in disease models. Therefore, future studies in vitro/in vivo disease models will be

required to further investigate the potential pathogenic roles of the identified TFs in NAFLD.
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STAR+ METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

NAFLD cohort 1 samples The European Nucleotide Archive SRP217231 https://www.ebi.ac.uk/ena/

NAFLD cohort 2 samples The European Nucleotide Archive SRP197353 https://www.ebi.ac.uk/ena/

NAFLD cohort 3 samples ArrayExpress Archive E-MTAB-9815 https://www.ebi.ac.uk/

arrayexpress/

Mouse NAFLD model This paper GSE184019 https://www.ncbi.nlm.nih.gov/

geo/

Experimental models: Organisms/strains

C57BL/6J mice Gothenburg, SE NA

Software and algorithms

R language version 4.0.3 https://cran.r-project.org/

Matlab language version R2020b https://www.mathworks.com/

Cytoscape version 3.8.2 https://cytoscape.org

Python version 3.8 Python Software Foundation https://www.python.org

Kallisto Bray et al. (2016) https://pachterlab.github.io/kallisto/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contract, Adil Mardinoglu (adilm@scilifelab.se).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The raw expression data derived from mouse samples have been reposited at Gene Expression Omnibus

and are publicly available as of the date of publication. Accession numbers are listed in the Key resources

table.

The paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contract upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Nine C57BL/6J mice were fed a standard mouse chow diet and housed in a 12-h light–dark cycle. From the

age of 8 weeks, the mice were then divided into two groups of 5 mice fed with chow diet, 4 mice fed with

high-sucrose diet for 3 weeks, respectively.

METHOD DETAILS

Transcriptomics data from mouse model

Nine C57BL/6J mice were fed a standard mouse chow diet and housed in a 12-h light–dark cycle. From the

age of 8 weeks, the mice were then divided into two groups of 5 mice fed with chow diet, 4 mice fed with

high-sucrose diet for 3 weeks, respectively. At the age of 11 weeks, all mice are sacrificed and liver necropsy

were taken for RNA sequencing. RNA sequencing library were prepared with Illumina RNA-Seq with Poly-A

selections. Subsequently, the libraries were sequenced onNovaSeq6000 (NovaSeq Control Software 1.6.0/
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RNA v3.4.4) with a 2351 setup using ‘NovaSeqXp’ workflow in ‘S1’ mode flow cell. The Bcl was converted to

fastq by bcl2fastq_v2.19.1.403 from CASAVA software suite (Sanger/phred33/Illumina 1.8+ quality scale).

The fastq files for mice were then processed using a standard protocol of Kallisto (Bray et al., 2016).
QUANTIFICATION AND STATISTICAL ANALYSIS

Data retrieving and pre-processing

Each dataset was pre-processed independently:

NAFLD cohorts. hepatic RNA-seq (raw fastq files) of NAFLD cohort 1 (Govaere et al., 2020) and cohort 2

(Hoang et al., 2019) were retrieved from European Nucleotide Archive (ENA) database (https://www.ebi.

ac.uk/ena/) (Amid et al., 2020) under accession numbers SRP217231 (215 biopsy-proven NAFLD patients)

and SRP197353 (78 biopsy-proven NAFLD patients), respectively; Hepatic RNA-seq of NAFLD cohort 3

(Azzu et al., 2021) with 58 biopsy-proven NAFLD patients were retrieved from the ArrayExpress data repos-

itory (Parkinson et al., 2005) under accession number E-MTAB-9815. Principle component analysis (PCA)

was used to detect outlier samples (Figure S1) and three outlier samples in NAFLD cohort 2 were removed

based on this analysis. Afterwards, gene abundance in both transcripts per million (TPMs)) and raw count

were quantified using the Kallisto (Bray et al., 2016) pipeline based on human genome (ensemble 102

version). We subsequently used DESeq2 R package following a standard protocol (Love et al., 2014) to

identify differentially expressed genes (DEGs, adjusted p-value < 0.01) and performed KEGG pathway

enrichment using the Platform for Integrative Analysis of Omics (PIANO) R package (Varemo et al., 2013).

GTEx cohort. The RNA-seq data with gene abundance in transcript TPMs from human tissues was retrieved

from Genotype tissue expression (GTEx) (https://gtexportal.org/home/datasets) (Consortium, 2013) and

retained the samples with available dataset in liver tissue.
Construction of co-expression network and analysis

Considering the dramatic increase in size owing to the many gene isoforms and non-coding RNAs (van

Dam et al., 2018), we used the ‘‘protein-coding genes’’ for annotation of RNA-seq dataset and then con-

structed the co-expression network in gene level. For each dataset, we first filtered out lowly-expressed

genes based on their median gene expression level (TPM <1) and constructed co-expression networks

by generating gene pairs Spearman correlation ranks within liver tissue, which was performed using ‘‘spear-

manr’’ function from SciPy (Virtanen et al., 2020) in Python 3.8. Next, considering the network with negative

correlation has relatively low correlation scores, we retained top 10% positively correlated genes that ful-

filled FDR < 0.05 on the network (Arif et al., 2021) and performed module detection analysis using Leiden

algorithm (Traag et al., 2019), implemented by Python package leidenalg (version 0.7.0) with ‘‘Modularity-

VertexPartition’’ to find the optimal partition. Modules with less than 30 genes were discarded to be able to

get significant functional analysis results in the downstream analysis.

To explore the module similarity between different cohorts, we calculated the Jaccard index, which is sim-

ply defined as the size of the intersection between twomodules divided by the size of the union of the same

two modules, and used hypergeometric test to determine whether the genes in one module significantly

overlapped with the genes in another module. The overlap was considered as significant when p-value less

than 0.05. Topological and node properties of modules were determined using the NetworkAnalyzer (As-

senov et al., 2008) plugin implemented in Cytoscape (version, 3.8.2) (Cline et al., 2007).
Functional annotation of modules in co-expression network of cohort

KEGG enrichment analysis. We performed functional enrichment analysis for the gene lists of each module

of co-expression network using hypergeometric test, which is implemented by the python package gseapy

(version 0.9.16; https://github.com/zqfang/gseapy), all gene sets of KEGG pathway were obtained from

database source of Enrichr (Kuleshov et al., 2016).

Disease enrichment analysis. DisGeNet (Pinero et al., 2017) is a platform integrating information of gene-

disease association from several public data sources and literature. In our analysis, the lists of diseases

enriched by the gene lists in each network module were retrieved from the DisGeNet database using Top-

pFun of the ToppGene suite (Chen et al., 2009), all gene sets in detected modules were used as
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background gene sets. Disease terms with Benjamini-Hochberg corrected p-value <0.05 were retained and

top 20 for each disease-associated module were presented.

Transcription factor enrichment analysis. We retrieved the human Transcriptional Regulatory Relationship

Unravelled by Sentence-based Text mining (TRRUST) v2 database (https://www.grnpedia.org/trrust/) (Han

et al., 2018) and obtained the lists of transcription factor and associated targets, which derived from 7,148

PubMed articles in where small-scale experimental studies of transcriptional regulation were described. In

total, 9,395 TF-target regulatory relationships of 795 TFs and 2,493 targets were supplied as database for

Enrichr (Kuleshov et al., 2016), implemented by the python package gseapy (version 0.9.16; https://github.

com/zqfang/gseapy).
Reporter metabolite and reporter transcription factor analyses

To investigate the detailed metabolic differences associated with NAFLD, we first performed reporter me-

tabolites analysis (Varemo et al., 2013) using the PIANO R package with topological information from liver-

specific GEM iHepatocytes2322 (Mardinoglu et al., 2014). Differential expression level of genes (log2-fold

change) in each contrast and corresponding significant levels (p value) were used as input.

To validate the enriched transcription factors in disease-associatedmodules, we also employed the PIANO

R package to perform reporter transcription factor (TF) analysis (Huang et al., 2017; Varemo et al., 2013) in

which log2-fold change and p-value of genes, as well as transcriptional regulatory information of TF-target

from TRRUST database (Han et al., 2018) were used as input. In the reporter TF analysis of a module, we

kept the original p-value of genes in the module and assigned the p-value of genes that are not in the mod-

ule to 1 in order to eliminate influences from genes in other modules.
TCGA data process and survival analysis

The transcript-expression level profiles (TPM) had been downloaded from Toil (Vivian et al., 2017) under the

project ID of TCGA-LIHC. We screened all samples in TCGA-LIHC cohorts and kept 363 donors with both

primary tumour solid tissue samples and clinical information. We only extracted tumour samples with iden-

tifier ‘‘A’’ for liver hepatocellular carcinoma and subsequently quantified the mRNA expression by Kallisto

(Bray et al., 2016) based on the GENCODE reference transcriptome (version 23). Genes with an average

TPM>1 were reserved for the following analysis. The clinical information was collected from TCGA Pan-

Cancer Clinical Data Resource (TCGA-CDR) (Liu et al., 2018b). Samples with a survival time of zero-day

were excluded.

To investigate if expression level of a gene is associated with patient outcomes, we first divided samples

into high and low expression groups based on TPM value of the gene. Next, we performed Kaplan-Meier

survival analysis to determine the association; the survival outcomes were then compared based on log-

rank tests. To choose the best TPM cut-offs for grouping, all TPM values from the 20th to 80th percentiles

were used to group the patients. Significant differences in the survival outcomes of the groups were exam-

ined, and the value with the lowest log-rank P-value is selected. The R package ‘‘survival’’ and graphics

‘‘ggplot’’ was used during the Kaplan-Meier analysis. Genes with log-rank P values less than 0.05 were

defined as prognostic genes. In addition, if the group of patients with high expression of a selected prog-

nostic gene has a higher observed event than the expected event, it is an unfavourable prognostic gene;

otherwise, it is a favourable prognostic gene. All analysis were conducted with R.
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