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Abstract: Understanding microbial growth with the use of mathematical models has a long history
that dates back to the pioneering work of Jacques Monod in the 1940s. Monod’s famous growth
law expressed microbial growth rate as a simple function of the limiting nutrient concentration.
However, to explain growth laws from underlying principles is extremely challenging. In the second
half of the 20th century, numerous experimental approaches aimed at precisely measuring heat
production during microbial growth to determine the entropy balance in a growing cell and to
quantify the exported entropy. This has led to the development of thermodynamic theories of
microbial growth, which have generated fundamental understanding and identified the principal
limitations of the growth process. Although these approaches ignored metabolic details and instead
considered microbial metabolism as a black box, modern theories heavily rely on genomic resources
to describe and model metabolism in great detail to explain microbial growth. Interestingly, however,
thermodynamic constraints are often included in modern modeling approaches only in a rather
superficial fashion, and it appears that recent modeling approaches and classical theories are rather
disconnected fields. To stimulate a closer interaction between these fields, we here review various
theoretical approaches that aim at describing microbial growth based on thermodynamics and outline
the resulting thermodynamic limits and optimality principles. We start with classical black box
models of cellular growth, and continue with recent metabolic modeling approaches that include
thermodynamics, before we place these models in the context of fundamental considerations based
on non-equilibrium statistical mechanics. We conclude by identifying conceptual overlaps between
the fields and suggest how the various types of theories and models can be integrated. We outline
how concepts from one approach may help to inform or constrain another, and we demonstrate
how genome-scale models can be used to infer key black box parameters, such as the energy of
formation or the degree of reduction of biomass. Such integration will allow understanding to
what extent microbes can be viewed as thermodynamic machines, and how close they operate to
theoretical optima.
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1. Introduction

Life is certainly one of the greatest wonders on earth. The ability to grow and reproduce
distinguishes living systems fundamentally from inanimate objects and engineered devices. However,
despite their extraordinary complexity, living organisms obey fundamental physical laws as any other
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system. Therefore, it is not surprising that generations of scientists have studied life, and in particular
microbial growth, using concepts and theories from physics. Whether microbes can be considered to
be sophisticated biochemical machines is a deeply philosophical and highly relevant question [1]. We
do not wish to enter this discourse here, and rather adopt a pragmatic point of view. Certainly, every
microbe uses available free energy gradients (either from chemicals in the environment, or—in the
case of photosynthetic organisms—from sunlight) to convert chemicals from the environment into a
copy of itself. Thus, from a thermodynamic viewpoint, microbes are technically machines that convert
free energy gradients into chemical work, which is used to construct a copy of themselves. So why
should not concepts, principles, and formulas from thermodynamics be applicable also to microbial
growth? In fact, it was exactly this mindset that led generations of scientists to develop excellent
thermodynamic theories of microbial growth in the second half of the 20th century [2]. Notably, a
major motivation to study microbial growth were biotechnological applications [3]. This is reflected by
the fact that many models ignored details of microbial metabolism, but instead considered only the
overall conversion of chemicals by a cell, which is described by a macrochemical equation [4]. This
approach became known as black box modeling of microbial growth [5–7]. This view fits well with the
available experimental technologies at that time [8,9]: In bioreactors and fermenters, fluxes of matter
and energy into and out of the cells could be precisely measured, and, together with observed growth
rates, were ideal to challenge the developed theories [2,10–12].

With the advent of high-throughput technologies, we have now an increasingly detailed picture of
the internal processes within a microbe. Especially metabolism, the biochemical networks converting
chemicals into chemical energy and biomass, is described with increasing detail. Consequently, new
modeling techniques and theories have emerged to describe and investigate genome-scale metabolic
networks [13]. These modern approaches now form a separate research field, which unfortunately
appears to have little connection to existing thermodynamic theories of life. Scientists developing
genome-scale network models and corresponding analysis techniques often seem to be unaware
of the fundamental thermodynamic theories and thus ignore an invaluable heritage left behind by
generations of great minds. And yet, detailed metabolic models can provide an unprecedented
opportunity to peek inside the black box models of microbial metabolism.

The purpose of this review is to provide a summary of essential developments of theory building,
both from the times before high-throughput technologies and after, as well as non-equilibrium
thermodynamics to describe self-replication. We outline and discuss thermodynamic limitations
and optimality principles that are revealed by different research approaches, before we develop links
and connections between modern modeling approaches and thermodynamic theories of microbial
growth. We aim to outline strategies how these promising but only loosely connected research fields
can be integrated to mutually benefit from each other, and to offer opportunities to deeper understand
microbial growth and discover fundamental principles of life.

2. Historical Overview

The economy of energy flow in living matter is a fascinating and complex topic that is and
was investigated by generations of great scientists. Starting with the pioneering work of Jacques
Monod [14–16], this section aims to give a concise overview of the historical developments in the
treatment of thermodynamic aspects in models describing microbial growth. By including not only
pure theoretical work but also past biotechnological examples, this section illustrates the motivation
of the researchers to focus on energetic aspects of microbial cultures, thereby uncovering numerous
interesting relationships.

Starting with Monod in the 1940s [15], who defined the biomass yield factor as the amount of
biomass formed divided by the amount of limiting nutrient used (Y), the quantitative description of
the production capabilities in microbial cultures evolved into a whole theory. The introduction of a
simple hyperbolic relationship that connects the amount of limiting resources in the environment to
growth rates of organisms opened the door for many different modeling approaches. Even today,
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the Monod growth law together with modern mathematical tools forms the basis for sophisticated
theories of microbial growth. Although the work of Jacques Monod is undoubtedly one of the major
achievements in microbiology of the 20th century, it is worth mentioning that others have proposed
growth laws with slightly different functional dependencies of the growth rate on substrate availability,
see for instance the work of Blackman and Tessier [17,18]. As Esener et al. show, all three models
(Monod, Blackman, Tessier) can realistically describe experimental data of batch cultures [19].

In 1956 Herbert et al. introduced the concept of continuous cultures [20]. In contrast to batch
cultivation, continuous cultures can be operated continuously for very long times, and thus presented
a considerable advance in biotechnology. Moreover, the growth rate can be controlled by adjusting the
dilution rate of the continuous cultivation system. Besides describing these systems experimentally,
Herbert also developed theories for their quantitative description [20]. In 1958, Herbert realized [19,21]
that the yield factor introduced in the 1940s by Monod is not constant but changes with the dilution
rate. Both Herbert (1958) and Pirt (1965) tried to explain this behavior by introducing maintenance
terms. The underlying assumption is that so-called maintenance functions, including turnover of
cell material or maintenance of concentration or osmotic gradients, that are essential for the survival
proceed with a rate that is independent on the growth rate [21,22]. Although Herbert [21] and Pirt [22]
provide different explanations for these maintenance processes, Esener et al. have argued that both
explanations can be used to essentially obtain the same results [19]. For a detailed discussion of
different maintenance parameters and their measurement see [23].

With these theories in hand, the question appeared how essential parameters of microbial
systems could be easily and relatively quickly estimated, given the diversity of organisms used
in the laboratories or in biotechnology, especially regarding the limited information about the
metabolism available at that time. The solution was the introduction of so-called black box models
that only need input and output information, which can be readily obtained by controlling a
bioreactor [3,5,7–9,19,24,25]. However, since the applicability of black box models heavily depends on
energy and mass balance, a profound thermodynamic background is needed to understand and justify
these approaches. Black box models were successfully applied to reveal many interesting relationships
between energy, biomass and yield.

As Mayberry et al. stated in the 1960s, there was a considerable interest in investigating the
proportionality between the yield and the converted energy [26]. One important contribution was
made by Mayberry et al. in 1968, who observed that for bacteria growing on a single carbon compound
that serves both as carbon and energy sources, the amount of produced dry weight (DW) of biomass
per available electrons (av e−) is relatively constant (3.14 gDW/av e−) for a wide range of organic
compounds. By redefining the concept of the "degree of reduction", which was first proposed by
Gunsalus and Shuster [27], as "[number] of those electrons in a compound not involved in orbitals with
oxygen [...]", and using the above mentioned observation, Mayberry et al. stressed the usefulness of
counting available electrons for the analysis of growth data. A significant contribution was to introduce
the degree of reduction in the treatment of energetic aspects in biology as a measurement of reducing
power of a compound. In 1973 Minkevich and Eroshin [28] derived a formula for calculating the
degrees of reduction (γ) of the electron donor, the biomass and metabolic products as well as a formula
to obtain the dried biomass per oxygen using an overall metabolic reaction. However, great care must
be taken when calculating and interpreting γ, since its derivation is dependent on the nitrogen source.
Therefore, Roels later defined a generalized formula for the degree of reduction that can be used for
any available nitrogen source [3].

By comparing numerous different organisms, carbon sources and literature, Minkevich and
Eroshin [28] concluded that the degree of reduction of biomass (γb) for many microbial species situates
around 4.2 (for comparison, glucose and acetate have a degree of reduction of 4 per carbon, while
methanol has 6, and oxalic acid 1). In addition to this, they used old thermochemical knowledge from
the 19th and early 20th century, namely that the molar combustion heats of organic compounds are
nearly proportional to the consumed oxygen (known as Thornton’s rule [29]) to derive an efficiency
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parameter of growth (η), which specifies the energy fraction (contained in the substrate) transferred to
biomass. This efficiency parameter sets a thermodynamic upper bound of the yield. Setting η = 1, one
obtains an upper bound of Y < γs

γb
, where γb denotes the degree of reduction of the biomass and γs of

the electron donor [24,28]. Nonetheless, this relationship is only valid if both the biomass and electron
donor possess the same heat of combustion per available electrons. By studying different chemical
species, Minkevich and Eroshin confirmed that the heat of combustion per gram-equivalent of oxygen
consumed or per available electrons is for most organic substances around 26.94 kcal [28]. Similar
values have been recalculated by numerous authors (for instance see [30,31]).

Later Erickson together with Minkevich and Eroshin introduced two more efficiency
measurements: The fraction of the energy in an organic compound transferred to products (ξp) and
the fraction that is evolved as heat (ε) during the growth process. Combined with the aforementioned
energy fraction transferred to biomass (η), Erickson et al. developed simple mathematical tests to
check for the consistency of various measured parameters, including energy requirements for growth
and maintenance [24].

However, as Roels states in his excellent report, those parameters are based on a not entirely
correct formulation of the second law of thermodynamics for open systems, because they assume that
cellular growth always releases heat to the environment [3]. However, there are examples of microbes
importing heat from the environment [8,11]. Roels provides a modified definition of maximum yield
on substrate, ω f , that is consistent with the second law of thermodynamics. Moreover, he introduced
two other definitions of maximum yield on substrate, one consistent with the heat transported to the
environment, ωe, and another consistent with the oxygen transport, ωo, respectively. By showing that
the values of ω f and ωe most often only deviate by 10%, he basically confirmed that Minkevich’s and
Eroshin’s η was a useful parameter, at least under aerobic conditions.

Since ω f is the maximum value of the yield that is consistent with the laws of thermodynamics,
Roels defined the thermodynamic efficiency of a growth process as ηth = Ysx/ω f , where Ysx is the
yield of biomass (x) given a certain substrate (s). By calculating the values of ηth for different organic
compounds as energy source, he observed that highly reduced as well as highly oxidized substrates
lead to a rather low efficiency. Roels concluded that substrates with a degree of reduction above 4.2
(the degree of reduction of biomass) contain enough energy to allow that all carbon could in principle
be converted into biomass. In contrast to this, for compounds with a degree of reduction below 4.2,
this is not possible due to energetic reasons.

How to incorporate these results into a mathematical model of bacterial growth was discussed by
Esener in his report "Theory and Application of unstructured Models: Kinetic and Energetic Aspects"
[19]. Together with his paper published in 1982, in which Esener et al. describe how to include aspects
of varying biomass composition under a changing environment in a formal description of bacterial
growth [32], his work is a good example of an early attempt to develop a consistent model explaining
bacterial growth. These approaches are clearly related to modern approaches to explain bacterial
growth laws (see [33,34]). For a very well written discussion comparing most of the efficiency measures
discussed above (and much more), see [6,7].

In combination, these investigations and concepts of thermodynamic efficiency in bacterial
growth provided the basis for further developments, including methods to estimate the energy and
entropy of formation for biomass, which represents a parameter of fundamental importance for
energetic calculations concerning life [30,31,35,36]. Particularly valuable were Battley’s contributions
for estimating the Gibbs free energy of formation of biomass, ∆ f Gb (−65.10 kJ/C-mol, γb = 4.998,
N2 as nitrogen source), and the enthalpy of formation for biomass, ∆ f Hb. By using the well-known
relation of entropy, enthalpy and Gibbs free energy, ∆G = ∆H − T∆S, he even attempted to estimate
the entropy of formation of biomass, but concluded that this method is too prone to errors, because it
highly depends on the quality of the approximation of enthalpy and Gibbs free energy [31].
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3. Recent Applications of Thermodynamics in Microbial Growth

The introduction of novel experimental techniques, often referred to as high-throughput ’omics’
technologies, around the beginning of the 21st century, allowed collecting extensive datasets and
information about important molecular components of cells, including metabolites, RNA, DNA and
protein levels. Falling cost and improved efficiency of genome sequencing gave rise to an ever-growing
number of sequenced organisms [37]. Annotated genomes in turn resulted in comprehensive
biochemical databases [38,39], which facilitated the construction of detailed metabolic models [40].
These models describe exactly those components which are inherently ignored in black box models,
and thus provide a complementary theoretical approach to understand microbial growth. The question
arises whether and how these approaches can be integrated.

Many analysis techniques to study large-scale metabolic network models, including flux-balance
analysis (FBA) [41] and elementary flux mode analysis [42,43], are based on the assumption that
metabolic fluxes are in a stationary state. This usually leads to a high-dimensional solution space and
often those solutions are determined, which maximize a certain objective, such as growth rate or yield.
However, without further constraints metabolic models may show thermodynamically infeasible
flux solutions, such as ATP-generating cycles. Thus, in the traditional approach to calculate flux
distributions ad hoc assumptions are made regarding the directions of the involved reactions. This
information is often available in the original literature or included in biochemical databases such as
KEGG or MetaCyc [38,39]. However, a binary distinction between reversible and irreversible does
not fully account for the fact that the direction quantitatively depends on the equilibrium constant
and the concentrations of the participating metabolites. Although the careful ad hoc assignment of
reaction directions has led to successful applications to investigate uptake rates of carbon sources
and byproduct secretion rates for several microorganisms [44–47], it was also realized that curating
large-scale metabolic network models to ensure that no infeasible flux solutions can be produced is a
time-consuming manual process [48].

Therefore, a main application of thermodynamics in metabolic models is to determine reaction
directionalities. The Gibbs free energy of reaction (∆RG) defines the direction in which a reaction
proceeds (always in the direction of negative ∆RG) and is given by

∆RG = ∑
i

ni∆ f G0
i + RT ∑

i
ni ln ci, (1)

where ni are the stoichiometric coefficients, ci the activities, and ∆ f G0
i the respective standard Gibbs

energies of formation, and the sum extends over all reactants of the reaction. Usually, the activities are
approximated by the metabolite concentrations. Energies of formation can efficiently be computed
using the group contribution method [49–51]. However, intracellular concentrations are much harder
to obtain. To overcome this limitation, several different strategies have been developed. A heuristic
approach based on network topology was introduced by Kümmel et al. [52], who described an
algorithm assigning reaction directions based on the information on which side of the reaction
energy-rich cofactors are found. To calculate thermodynamically feasible elementary flux modes
in metabolic networks, Jol et al. [53] used a combination of quantitative metabolome data, flux
variability analysis [54] and network-embedded thermodynamic analysis [55]. More recently, Peres
et al. calculated thermodynamically feasible elementary flux modes by using equilibrium constants
instead of internal metabolite concentrations [56]. A pragmatic strategy is to constrain reactions
to physiologically feasible directions by estimating reasonable concentration ranges [57–59]. Beard
et al. extended FBA by introducing energy balance analysis, which provides further constraints
on flux bounds using estimated chemical potentials [60], resulting in thermodynamically feasible
reaction directions for a genome-scale model of Escherichia coli. A more advanced strategy is to extend
FBA to include metabolite concentrations as variables. Depending on the sign of Equation (1), the
corresponding reaction is then constrained to a positive or negative flux. This results in a mixed-integer
optimization problem, which ensures that the resulting flux distributions and metabolite concentrations
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are consistent with thermodynamic constraints [61]. In the approach by Hoppe et al. [61], the
concentrations were constrained based on prior knowledge and experimental data.

A more recent technique to understand microbial growth based on optimality principles are
resource allocation models [62–64], which treat microbial growth as an economic process. A cell
has only a limited amount of available resources, such as nutrients, energy or space, and costs in
terms of these resources are defined for the production of various cellular components, including
macromolecules like enzymes and ribosomes. The principal idea of resource allocation models is
to find an optimal strategy to allocate the available resources to maximize a certain output (usually
the microbial growth rate). In fact, understanding microbial growth as an economic process, in
which limited resources (such as macromolecules or space) have to be efficiently allocated, dates back
to the pioneering work of Schaechter et al. [65,66] in the 1950s. Recently, comprehensive resource
allocation models were proposed, which allow calculating and thus further understanding balances and
trade-offs during microbial growth [62]. Molenaar et al. [67] observed that in contrast to flux-balance
models where optimizing growth leads to a linear optimization problem, optimizing self-replication
in resource balance models leads to highly complex behaviors even in simple self-replicator models.
Employing thermodynamic flux-force relationships, Noor et al. showed that the logarithm of the
ratio of forward and backward fluxes of a reaction is proportional to the Gibbs energy dissipation of
the reaction [68], and therefore concluded that reactions with Gibbs energy dissipation close to zero
require increased amounts of enzyme to facilitate a given net flux. In most resource allocation models,
these thermodynamic contributions are not included. Extensive incorporation of thermodynamic
principles has been applied by Niebel et al. [69] to analyze growth of Saccharomyces cerevisiae and E. coli,
including thermodynamic constraints. In their work, it was suggested, based on experimental data,
that an upper limit of the Gibbs energy dissipation rate exists. This assumption allows the formulation
of an equation for the Gibbs energy balance, which constrains the sum of all Gibbs energy dissipation
rates of all internal reactions to be equal to the exchange of Gibbs energy with the environment. The
resulting models were used to predict oxygen uptake as well as byproduct and biomass production
rates for different substrate uptake rates. Furthermore, some intracellular fluxes were predicted and
then measured with 13C Metabolic Flux Analysis, which is an experimental approach to quantify
metabolic fluxes using stable isotopes [70]. In their work it was observed that with increasing substrate
uptake rates, the model shifted flux distributions from pathways with high dissipation rates, such as
respiration, to pathways with lower dissipation rates, such as fermentation. Thus, they could provide a
putative explanation, based on thermodynamic principles, for overflow metabolism phenomena, such
as the Crabtree and Warburg effects, which traditional flux-balance models are unable to explain. Their
approach, while certainly increasing thermodynamic rigor and improving the predictive capabilities,
comes at the cost of increased computational complexity. To find flux distributions that maximize
growth, the authors used a mixed-integer non-linear program.

However, it is interesting to note that the strict upper limit of Gibbs energy dissipation can be
questioned. Older studies [71,72] showed that oxygen consumption remains constant for growth rates
above a certain threshold, and that the cells additionally ferment glucose, which would lead to a
further increase in Gibbs energy dissipation.

4. Thermodynamic Approaches to Self-Replication

The approaches discussed above employ classical thermodynamics to study microbial growth.
Because the process of self-replication must obey fundamental physical laws, it should in principle be
possible to describe it with concepts from statistical thermodynamics. In the 1990s, the development of
the so-called fluctuation theorems [73–76] constituted a major advance in non-equilibrium statistical
physics. Basically, they represent a generalization of the second law of thermodynamics. They link
the probability to observe an entropy increase σ during a time interval τ to the probability to observe
an entropy decrease by the same amount in the same time. This class of theorems can be generally
expressed by
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P(+σ)

P(−σ)
= exp (στ), (2)

where P(+σ) and P(−σ) denote the probabilities to observe an entropy increase or decrease by σ

during time τ, respectively. More recently, J. L. England [77] has proposed to apply this approach
to self-replicating systems. Obviously, replication is a highly irreversible biological process and can
be described in the language of statistical physics as a system that goes from a macrostate I (a single
cell and the substrates in the surrounding medium), to a macrostate II (two daughter cells and the
substrates), where each macrostate corresponds to an extremely large number of microstates. England’s
reasoning starts from the fact that particles obey classical mechanics at the microscopic scale, and
therefore follow a reversible dynamic. This allows quantifying the reversibility of a microscopic
transition by the associated change in entropy. Applying these microscopic considerations to the
macroscopic scale, the author obtains a generalization of the second law of thermodynamics for
macroscopic irreversible biological processes.

While the classical second law of thermodynamics states that the increase of entropy of a closed
system is always positive and obeys the inequality

∆Qex + T∆Sint ≥ 0, (3)

where ∆Qex is the amount of heat exchanged with the environment and ∆Sint the internal entropy
increase of the system, England’s derivation adds a new term to this relation,

∆Qex

T
+ ∆Sint + ln

π(II→ I)
π(I→ II)

≥ 0, (4)

where π(I → II) (respectively π(II → I)) stands for the probability that the system evolves from
macrostate I to macrostate II (respectively from II to I). When a macroscopic transition is irreversible
(π(II → I) � π(I → II)), the logarithm becomes negative, increasing the lower bounds for heat
dissipation and entropy increase.

Equation (4) allows a closer look at self-replication. England applies this relation to a population
of exponentially growing cells. He denotes the growth rate as g and the reverse rate (highly
unlikely to happen) as δ. It allows expression of π(I → II) as gdt and π(II → I) as δdt. Hence,
Equation (4) becomes

∆q
T

+ ∆sint ≥ ln (g/δ), (5)

where ∆q and ∆sint are the respective intensive quantities. From this relation, one can see that the
maximum duplication rate gmax is obtained when the right and left terms are equal. Therefore,

gmax − δ = δ
(

e∆q/T+∆sint − 1
)

. (6)

Because the net growth rate is (g− δ), this last relation is of particular interest. The right-hand term
shows the dependency on three quantities. The net maximal growth rate will increase with heat
dissipation, ∆q, internal entropy change, ∆sint, and the rate at which the reverse process would occur,
δ. The author emphasizes an interesting property: for identical entropy changes and decay rates, a
replicator that dissipates more heat compared to another will have a higher maximal growth rate. A
second particularly interesting aspect is the dependency of the net maximal growth rate on δ and ∆sint.
Low degree of organization and low stability make a replicator more competitive.

Application of Equation (4) to any self-replicator needs an estimation of the rates g and δ. England
considers two examples, a self-replicating RNA and a replicating E. coli cell. For the former, RNA
replication is considered to consist of a single ligation, which allows the author to estimate the
decay rate δ from the half-life time of a phosphodiester bond and a duplication rate g from the RNA
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doubling time. Hence, he found a minimum limit of heat dissipation of 7 kcal ·mol−1 for an RNA
self-replicator, while the actual heat dissipation for the ligation reaction is measured experimentally as
10 kcal ·mol−1. England argues that for the same reaction occurring for DNA, one finds a lower limit
for heat dissipation of 16 kcal ·mol−1, because of a considerably longer half-life of DNA compared to
RNA. Therefore, such a ligation for DNA is thermodynamically not possible.

The same approach is applied to bacterial cell division. England considers a system with a single
bacterium at constant temperature T in a rich medium. The system is initially in macrostate I (a single
bacterium and the substrate), and will evolve through cell division to macrostate II (two bacteria and
the substrate). Application of Equation (4) to this system provides a lower limit of heat dissipation
for cell replication. This amount is six times lower than what was experimentally observed for E. coli,
which is, according to England, surprisingly close to the thermodynamic limit.

In a very clearly described theoretical framework, Piñero et al. [78] have extended this approach
to different types of self-replicating systems. They found specific thermodynamic constraints for each
replicator type.

5. Combining Black Box Techniques with Modern Genome-Scale Approaches

In this section, we attempt to provide examples on how to integrate classical black box model
techniques with modern genome-scale modeling approaches. Integrating thermodynamics into
metabolic networks is currently one of the most fascinating and difficult challenges in the field
of metabolic pathway analysis. However, methods and concepts developed for black box models are
rarely applied in modern theoretical research. Highly relevant quantities are the Gibbs energies of
reactions (∆RG). To determine these requires knowledge of the Gibbs energies of formation (∆ f G)
of the participating compounds. In the context of a black box model, only overall reactions are
considered, in which nutrients are converted into biomass and byproducts. Therefore, calculating the
corresponding Gibbs energy of reactions depends on the Gibbs energy of formation of the biomass
(∆ f Gb). This quantity is directly accessible using, for instance, a technique described by Battley in
1993 [31] (see historical overview in Section 2).

To approximate the value of ∆ f Gb, Battley considers a hypothetical combustion reaction of the
biomass into fully oxidized components. For an experimentally determined elemental composition of
the biomass of CH1.595O0.374N0.263P0.023S0.006 this reads

CH1.595O0.374N0.263P0.023S0.006 + 1.251 O2 + 0.012 KOH −−→ CO2 + 0.131 N2 + 0.006 P4O10 +
0.006 K2SO4 + 0.803 H2O.

Employing now the formula to calculate the degree of reduction when N2 is assumed to be the
nitrogen source,

γ = 4nC + nH − 2nO − 0nN + 5nP + 6nS − ne− , (7)

in combination with the relation between the energy of combustion for an organic compound and its
degree of reduction (Battley assumes -107.90 kJ/av e−), he was able to estimate the energy of formation
for biomass as -65.10 kJ/C-mol (not including ions). The nX in equation (7) denotes the number of
atoms of type X or charge (ne− ), respectively. The energies of formation necessary for obtaining this
value are listed in Table 1.

Because all necessary information for repeating this calculation are contained in curated
genome-scale models, it is rather straight-forward to transfer this old technique to modern modeling
approaches. To demonstrate this, we determine the ∆ f Gb-values for all genome-scale models contained
in the BiGG database [79], using the specified biomass reactions. Figure 1 shows the distribution of
energies of formation as function of the degree of reduction.
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Table 1. Standard free energy of formation for various organic compounds of interest necessary for
estimating the energy of formation for biomass (see [31]).

Substance Formula ∆ f G0
i [kJ/mol]

Oxygen O2 (g) 0
Potassium hydroxide KOH (c) −379.11

Carbon dioxide CO2 (g) −394.36
Nitrogen N2 (g) 0

Phosphorous decoxide P4O10 (c) −2697.84
Potassium sulfate K2SO4 (c) −1321.43

Water H2O (lq) −237.18

A comparison with the reported values (∆ f Gb = −65.10kJ/C-mol and γ = 4.998 – see historical
overview in Section 2) reveals that for most models energies of formation and degrees of reduction
of the biomass are in agreement with former theoretical approximations. However, there are some
values that deviate drastically from the mean (compare, for instance, upper right corner in Figure 1).
Possibly, the observed variation results from different biomass compositions that were assumed for
the specific models and their particular research questions. However, this kind of calculation offers the
opportunity to scrutinize the plausibility of model assumptions, in particular referring to the biomass
functions. For example, an energy of formation of +200kJ/C-mol seems highly unlikely.

Figure 1. Energy of formation ∆ f Gb for biomass as encoded in genome-scale models of the BiGG
database. Each point represents a biomass composition as described in the models. 85 models of the
BiGG database containing 165 biomass functions were analyzed. Mean ∆ f Gb = −70.079 kJ/C-mol,
Mean γ = 4.996.

Another possibility for a straight-forward approach to combine thermodynamic concepts from
black box models with genome-scale models is a separate analysis of anabolism and catabolism. To
calculate properties of anabolism, such as those predicted by Battley in 1993 [31], from genome-scale
models, we pursue the following approach: Genome-scale models from the BiGG database were
modified in two steps. First, all reactions that can produce ATP are disabled by introducing a dummy
compound representing "unusable" ATP. Second, two strictly coupled reactions are introduced that
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import ATP into the cytosol, and export ADP and orthophosphate with the same rate. The strict
coupling of import and export ensures that only energy, but no matter is introduced into the system.
Thus, the modified model is unable to produce ATP from any carbon source and instead must use the
imported ATP as energy source. Therefore, this modification separates anabolism from catabolism by
simulating an external "ATP battery" providing the organism with external chemical energy, replacing
the usual catabolic pathways.

These modified models were used to simulate anabolism separated from catabolism. In particular,
we calculated the minimum amount of ATP required to incorporate one carbon atom from the nutrients
into biomass and the minimum number of CO2 molecules that are released in this process. For this,
the biomass production rate was fixed to the value obtained from the original model (in all cases
the objective was maximization of the biomass production rate) and subsequently minimizing all
carbohydrate import fluxes. The results are shown in Figure 2. Every point represents one model
from the BiGG database. The x-axis displays the ratio of carbon dioxide produced by anabolism only
to that produced by the original metabolism, in which anabolism and catabolism are coupled. The
y-axis shows how many moles ATP are minimally required to incorporate one mole carbon atoms into
the biomass. The large number of data points sharing the same anabolism versus metabolism ratio
of released CO2 can be explained by the fact that a large proportion of models available in the BiGG
database are for E. coli, and use the same biomass definition. For all E. coli models except the "core
model", the required ATP per biomass carbon is between 2 and 3.5. Interestingly, the anabolism versus
metabolism ratio of released carbon dioxide for the E. coli models is very close to the ratio predicted by
Battley [31] (indicated by the dotted black line).

Figure 2. Anabolic properties of genome-scale models of the BiGG database. The y-axis indicates the
minimum required amount of ATP per biomass carbon. The x-axis displays the ratio of carbon dioxide
released by anabolism to carbon dioxide released by overall metabolism (including anabolism and
catabolism).

To illustrate how different modeling approaches can yield complementary interpretations of
the same phenomenon, we consider in the following a simple thermodynamic black box model
describing overflow metabolism in analogy to the detailed metabolic model developed by Niebel
et al. [69]. The model is based on three assumptions. Assumption 1 states that growing cells can operate
in two catabolic modes, which here correspond to fermentation and respiration, or a combination
thereof. These catabolic reactions provide the required thermodynamic driving force for the overall
metabolism. Assumption 2 states that the required Gibbs energy to convert one C-mol into biomass
(the thermodynamic driving force) is dependent on the catabolic mode, and that fermentative growth
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requires less Gibbs energy per C-mol biomass than respiratory growth. This difference is motivated
by numerous experimental data, which are summarized by Heijnen and van Dijken [6]. Finally,
assumption 3 is identical to that made by Niebel et al. [69], stating that the total Gibbs energy dissipation
rate is limited. These assumptions lead to two global constraints for cellular metabolism, one in the
form of an energy balance, the other as an upper limit of the Gibbs energy dissipation rate (see
Appendix A). If one further assumes that within the bounds defined by the constraints the cell uses
that catabolic mode minimizing the total carbon uptake rate, short calculations (see Appendix A) lead
to the results depicted in Figure 3.

(a) Gibbs energy dissipation. (b) Respiration and fermentation.

(c) Oxygen uptake and ethanol release. (d) Growth and yield.

Figure 3. Black box model results for overflow metabolism.

Remarkably, these results are in very good quantitative agreement with experimental data
(cf. Figure 2 in [69]). The virtue of the black box model is its extreme simplicity, which offers
explanations for the observed behavior. The critical growth rate (λcrit ≈ 0.33/h in Figure 3a) is reached
when pure respiratory growth dissipates the maximal Gibbs energy per time. When this critical growth
rate is exceeded, metabolism gradually shifts towards fermentation, because fermentation requires
less Gibbs energy per C-mol biomass generated. Thus, higher growth rates can be obtained at the
expense of a lower yield (Figure 3d), which is also manifested by the sharp increase in carbon uptake
rate (Figure 3d). Naturally, a black box model is unable to explain or predict internal flux distributions.
One of the key predictions of the detailed constraint-based model presented in [69] entails that in the
limit of pure fermentative growth approximately 40% of the Gibbs energy is dissipated by only two
enzymes, pyruvate decarboxylase and pyruvate kinase.

These considerations demonstrate the strengths and limitations of the different modeling
approaches and outline how a combined analysis could considerably improve our understanding.
Whereas black box models provide simple explanations for the observed growth behavior because of
the model assumptions, detailed metabolic models allow investigating how the behavior is realized
internally. An unsolved question is, for example, why fermentative growth requires less Gibbs energy
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for the same amount of biomass production when compared to respiratory growth. The detailed
model could be used to examine the underlying mechanisms and pathways that are responsible for
this experimentally confirmed observation. The models discussed here explain the growth behavior
by assuming a limitation of the Gibbs energy dissipation. However, alternative explanations, such as
limitations of heat production or cellular resources [62,80,81], are also conceivable. These and other
hypotheses could be tested in a combined approach employing black box and detailed metabolic
models. Thus, direct consequences of the assumptions and global limitations can directly be compared
with predicted internal flux arrangements, paving the path towards finding mechanistic explanations
for the complex emergent behavior of microbial growth (supplementary material).

6. Outlook and Conclusion

Increasing fundamental understanding of microbial self-replication and its limitations,
thermodynamic considerations and calculations, can give valuable insights and expand the current
knowledge about microbial growth. When attempting to answer the question whether prokaryotic
organisms are thermodynamically optimized self-replicators, one is immediately confronted with
several fundamental problems. There does not seem to be an agreement of what exactly
"thermodynamic optimality" means. The black box models, discussed in Section 2, which arose in the
20th century focused on estimations of microbial growth efficiency parameters by only considering
the exchange of matter and energy between cells and their environment. The parameters for aerobic
microbial growth efficiency, proposed by Minkevich, Eroshin and Erickson [24,28], incorporated the
degree of reduction of the biomass, substrates and electron donors to estimate a thermodynamic upper
bound for the yield. This efficiency of biomass yield can be considered an important interpretation of
thermodynamic optimality.

The upsurge of high-throughput techniques in the early 21st century gave rise to genome-scale
metabolic models, opening the "black boxes" of microbial metabolism. These models provide
excellent tools to investigate metabolic flux distributions. Some genome-scale metabolic models
consider thermodynamics to constrain intracellular fluxes, but rarely for finding constraints for
self-replication and growth itself. The work of Niebel et al. [69], mentioned in Section 3, is one of the
most comprehensive approaches how to employ thermodynamics for the investigation of microbial
growth using genome-scale metabolic models. Based on experimental data, the authors proposed
an upper limit of Gibbs free energy dissipation during growth. They supported their hypothesis
by implementing additional thermodynamic constraints reflecting this upper limit of Gibbs free
energy dissipation. A flux distribution optimizing growth, which obeys this upper limit can also
be considered to be an interpretation of thermodynamic optimality. A redistribution of fluxes to
fermentative pathways due to constraints by the upper limit of Gibbs energy dissipation described by
Niebel et al. [69] only occurs at high glucose uptake rates in E. coli and S. cerevisiae. Such conditions
of excess nutrient availability are rarely found in nature and therefore an evolution towards such
thermodynamic optimality is questionable. However, a hypothetical environment of fluctuating
periods of excess nutrient availability could provide a fitness increase for microbial organisms adapted
to flux redistribution obeying the upper limit of Gibbs energy dissipation.

A promising complementary approach attempts to describe microbial self-replication by basic
principles from physics. In stark contrast to genome-scale models, which heavily depend on
high-throughput data and computational power, applying physical concepts requires only a minimum
amount of data. The work by England, mentioned in Section 4, aims at understanding microbial
growth from a thermodynamic perspective. By applying fluctuation theorems to the non-equilibrium
process of self-replication, a generalization of the second law of thermodynamics for irreversible
transitions between two macroscopic states has been derived. This allowed calculating a lower bound
for the produced heat during self-replication as a function of the internal entropy, growth and decaying
rates. A consequence of these calculations is that a self-replicating microbe that dissipates heat with
a rate close to the thermodynamic minimum is optimal in the sense that energy loss is minimized.
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However, the maximal rate of self-replication increases with increased heat dissipation. The finding
that the heat dissipation of E. coli is not far from the calculated minimum needed for self-replication
hints at evolution towards thermodynamic efficiency. However, the calculations imply that replication
rates are increased with higher internal entropy and an increased rate of spontaneous self-decay. Both
properties are not commonly found in microbial organisms. These properties may be beneficial to
increase growth rate from a thermodynamic perspective, but are probably disadvantageous regarding
other evolutionary pressures.

Evidently, there is no simple and unique answer to the question whether microbial growth is
a process operating near thermodynamic optimum. Although all three concepts described here are
concerned with the same phenomenon, each of them represents a different perception and viewpoint
on the thermodynamic optimality of microbial growth. In our opinion these three concepts, as different
as they may be, host an enormous potential to complement each other into an extended understanding
of thermodynamic limitations and optimality of microbial growth.

The minimum amount of heat dissipation, and the upper limit of Gibbs free energy dissipation
define fundamental thermodynamic limitations of microbial growth. The lower bound is a consequence
of the extended second law of thermodynamics: It is impossible to replicate with less dissipated heat.
The upper bound is an empirical observation which so far does not have a theoretical explanation. It
implies that there is a theoretical upper limit for microbial growth rates. In addition, black box models
allow calculating upper bounds of the yield based on physical-chemical properties of substrate and
biomass, and most importantly the degree of reduction. It is not yet clear how these three limitations
can be considered simultaneously, whether they agree, and how combining them might result in a
more confined thermodynamic space.

An interesting observation was made by von Stockar [11], who reviewed thermodynamic data on
microbial growth. This review includes examples of microbes that import heat from their environment,
and compensate this by exporting chemical entropy [8]. Other microbes can do the opposite and even
reduce the chemical entropy of their environment, at the expense of increased heat dissipation [82].

After pointing out that by combining the different interpretations of thermodynamics of microbial
growth their potential could be drastically enhanced, we suggest that attempts to merge different
thermodynamic theories should be further developed. One example of such a combined approach is
the analysis of genome-scale models using constraints and concepts from black box models of microbial
metabolism. Section 5 shows that in a relatively simple fashion, the combination of genome-scale
models and black box models provides promising strategies to further understand thermodynamics of
microbial growth and metabolism. However, for incorporating black box model concepts, metabolic
networks need to guarantee to obey fundamental conservation laws. For example, calculating the upper
thermodynamic limit of the yield (Y < γs

γb
), requires the determination of the degrees of reduction for

the biomass and all substrates. This heavily depends on a fully mass- and charge-balanced metabolic
network. During our analysis, we noticed that only a few models actually fulfil this condition. This is
understandable if one considers that most models were constructed for a completely different purpose.
Finding flux distributions that optimize the incorporation of carbon into biomass also works without a
perfectly charge-balanced network, and even an incorrect mass balance, which only concerns hydrogen
atoms, will not affect the results. Nonetheless, to be truly reusable, in particular for thermodynamic
calculations, any genome-scale model that is published should adhere to these fundamental chemical
principles. We hope that this review encourages further activities to integrate different thermodynamic
concepts and motivates the introduction of stricter standards to ensure reusability of genome-scale
metabolic models.

Supplementary Materials: All code for analyzing published genome-scale metabolic networks and for
reproducing the black-box model results in Section 5 is available at https://gitlab.com/qtb-hhu/thermodynamics-
in-genome-scale-models.

https://gitlab.com/qtb-hhu/thermodynamics-in-genome-scale-models
https://gitlab.com/qtb-hhu/thermodynamics-in-genome-scale-models
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Abbreviations

The following abbreviations are used in this manuscript:
Y Biomass yield
γ Degree of reduction
Φ Vector of rates of flow into the system
µ Vector of specific molar enthalpies
∆RG Gibbs free energy of reaction
∆ f Gb Gibbs free energy of formation for biomass
∆ f G0

i Standard Gibbs free energy of formation for a metabolite i
σ Entropy production
τ Time
T Temperature in Joule, kB set to 1
P(±σ) Probability to observe an entropy production of ±σ

π(II→ I) Probability to observe a transition from macrostate II to I
π(I→ II) Probability to observe a transition from macrostate I to II
g Duplication rate
δ Decaying rate

Appendix A. A Black Box Model of Overflow Metabolism

In the following, we derive a simple black box model of overflow metabolism, the phenomenon
studied in [69] with a detailed thermodynamic metabolic model. The model is based on three
main assumptions.

Assumption 1: Two Modes of Catabolism

The microbe can grow using either of two modes of catabolism (or a combination thereof), denoted
C1 and C2, both based on the same carbon source. Catabolism C1 delivers Gibbs free energy G1 per
C-mol of consumed nutrient, catabolism C2 delivers G2. If C1 is associated with fermentative growth
on glucose and C2 with respiratory growth on glucose, G1 = 39kJ/C-mol and G2 = 479kJ/C-mol [11].
This Gibbs free energy difference provides the thermodynamic driving force for the anabolic processes
converting the same carbon source into biomass.

We denote by α1, α2, λ the rates at which C1, C2 and anabolism (growth) proceed. Then, the total
carbon uptake is

vc = α1 + α2 + λ (A1)

and the total Gibbs energy dissipation rate reads

D = α1G1 + α2G2. (A2)

Assumption 2: Thermodynamic Driving Force Depends on Catabolism

It was observed by Heijnen and van Dijken [6] that the overall Gibbs free energy required to
generate 1 C-mol of biomass is lower for fermentative growth than for respiratory growth, and that
this difference lies in the range of 50 to 150 kJ/C-mol. The Gibbs energies required for the two catabolic
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modes are denoted G(1)
M and G(2)

M . For fermentative and respiratory growth on glucose we estimate

these values from [6] to be G(1)
M = 250 kJ/C-mol and G(2)

M = 330 kJ/C-mol. We assume that the
required Gibbs energy gradient per biomass, GM, depends linearly on the relative catabolic rates,

GM = G(1)
M +

α2

α1 + α2
(G(2)

M − G(1)
M ) =

1
α1 + α2

(α1G(1)
M + α2G(2)

M ). (A3)

The statement that catabolism provides the thermodynamic driving force for anabolism translates
into the balance equation

α1G1 + α2G2 = λGM =
λ

α1 + α2
(α1G(1)

M + α2G(2)
M ). (A4)

Assumption 3: Upper Bound of Gibbs Energy Dissipation Rate

This assumption simply states that

α1G1 + α2G2 ≤ Dmax. (A5)

The value given in Niebel is Dmax = 3.7kJ/gDW/h. A typical biomass composition
of CH1.613O0.557N0.158P0.012S0.003 [83] results in 0.42gC/gDW or 0.035C-mol/gDW, resulting in
Dmax = 110kJ/gDW/h.

To calculate the catabolic rates for a given growth rate, we now identify the minimal total carbon
uptake rate vc, such that energy balance (A4) and dissipation limitation (A5) are observed.

To solve this problem, it is elucidating to consider pure fermentation (α2 = 0) and pure respiration
(α1 = 0) first. For pure fermentation, Equation (A4) reduces to

α1G1 = λG(1)
M ⇔ α1 = λ

G(1)
M

G1
⇔ D = λG(1)

M . (A6)

Likewise, for pure respiration

α2G2 = λG(2)
M ⇔ α2 = λ

G(2)
M

G2
⇔ D = λG(2)

M . (A7)

Since fermentation requires less Gibbs energy per C-mol biomass than respiration, it holds that

G(1)
M < G(2)

M . (A8)

Moreover, we assume that
G(1)

M
G1

>
G(2)

M
G2

, (A9)

which is clearly fulfilled for the numerical values mentioned above. This means that at a given
growth rate λ, the total carbon uptake for pure fermentative growth must be larger than for pure
respiratory growth:

vferm
c = λ

(
G(1)

M
G1

+ 1

)
> λ

(
G(2)

M
G2

+ 1

)
= vresp

c . (A10)

Therefore, for a fixed growth rate λ, minimizing total carbon uptake is equivalent to maximizing
the proportion of respiratory catabolism, while observing dissipation limitation (A5). Clearly, for
growth rates λ < λcrit = D/G(2)

M , the most economic growth mode in terms of carbon uptake is pure
respiratory growth.
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For growth rates λ > λmax = D/G(1)
M , there exists no solution fulfilling both conditions (A4)

and (A5).
For growth rates λcrit < λ < λmax, the solution is obtained by assuming equality for Equation (A5)

and solving simultaneously with Equation (A4). Introducing

c = α1 + α2 and a =
α1

α1 + α2
(A11)

Equation (A4) becomes

c (aG1 + (1− a)G2) = λ
(

aG(1)
M + (1− a)G(2)

M

)
(A12)

⇔ c = λ
aG(1)

M + (1− a)G(2)
M

aG1 + (1− a)G2
, (A13)

and the total carbon uptake rate is

vc = λ

(
aG(1)

M + (1− a)G(2)
M

aG1 + (1− a)G2
+ 1

)
. (A14)

Finally, a is obtained from solving Equation (A5), yielding

a =
G(2)

M − Dmax/λ

G(2)
M − G(1)

M

. (A15)

All plots in Figure 3 have been produced using Equations (A14) and (A15).
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